

LadderLeak: Breaking ECDSA with Less than One Bit of Nonce Leakage

Risk of randomness failure in ECDSA-type signatures

• k is a uniformly random value satisfying

$$k \equiv \underbrace{z}_{\text{public}} + \underbrace{h}_{\text{public}} \cdot x \mod q.$$

- k should **NEVER** be reused/exposed as $x = (z z')/(h' h) \mod q$
- What if k is **biased** or **partially leaked**? \rightarrow Attack possible by solving the **hidden number problem (HNP)**!
- Two different approaches to HNP: Fourier analysis vs lattice attack.

Challenges

- Can we reduce the data complexity of Fourier analysis-based attack?
- Can we attack even less than 1-bit of nonce leakage (i.e., top-most bit of nonce k is only leaked with prob. < 1?
- Can we obtain such a small leakage from practical ECDSA implementations?

Our contributions

- . Novel class of cache attacks against the Montgomery ladder scalar multiplication in OpenSSL 1.0.2u and 1.1.01, and RELIC 0.4.0.
- Affected curves: NIST P-192, P-224, P-256 (not by default in OpenSSL), P-384, P-521, B-283, K-283, K-409, B-571, sect163r1, secp192k1, secp256k1
- 2. Improved theoretical analysis of the Fourier analysis-based attack on HNP (originally established by Bleichenbacher)
- Significantly reduced the required input data
- Analysis in the presence of erroneous leakage information
- 3. Implemented a full secret key recovery attack against OpenSSL ECDSA instantiated over sect163r1 and NIST P-192.

Comparison with previous HNP records

	< 1	1	2	3	4
256-bit	_	_	[TTA18]	[TTA18]	[Rya18, Rya19, MS
192-bit	This work	This work	—	—	_
160-bit	This work	This work (less data), [AFG ⁺ 14, Ble05]	[Ble00][LN13]	[NS02]	_

¹DIGIT, Aarhus University, Denmark

Diego F. Aranha¹ Felipe R. Novaes² Akira Takahashi¹ Mehdi Tibouchi³ Yuval Yarom⁴

²University of Campinas, Brazil

³NTT Corporation, Japan

LadderLeak: Tiny timing leakage from the Montgomery ladder

Algorithm 1 Montgomery ladder
Input: $P = (x, y), k = (1, k_{t-2},, k_1, k_0)$ Output: $Q = [k]P$
1: $k' \leftarrow \text{Select}(k+q,k+2q)$
2: $R_0 \leftarrow P, R_1 \leftarrow [2]P$
3: for $i \leftarrow \lg(q) - 1$ downto 0 do
4: Swap (R_0, R_1) if $k'_i = 0$
5: $R_0 \leftarrow R_0 \oplus R_1; R_1 \leftarrow 2R_1$
6: Swap (R_0, R_1) if $k'_i = 0$
7: end for
8: return $Q = R_0$

Cache-timing attack experiments

Experiments were carried out with Flush+Reload cache attack technique \rightarrow MSB of k was detected with > 99 % accuracy.

Figure 1. Pattern in traces collected by **FR-trace** for the **binary curve** case.

How to quantify the nonce bias

Bias function

$$K) = \frac{1}{M} \sum_{i \in [1,M]}$$

SEH19, WSBS20]

Figure 2. Pattern in traces collected by **FR-trace** for the **prime curve** case.

⁴University of Adelaide and Data61, Australia

Conditions for the attack to work:

. Group order is $2^n - \delta$ with small δ .

2. Accumulators (R_0, R_1) are in **projective coordinates**, but initialized with the base point in affine coordinates.

3. Group law is non-constant time wrt handling Zcoordinates ~ Weierstrass model

- $e^{2\pi i k_i/q}$.
- Biased $k_i \in [0, q/2)$

Bleichenbacher's Fourier analysis-based attack

- Critical intermediate step: collision search of integers h Detect the bias peak correctly and efficiently

Tradeoff graphs for 1-bit bias

Experimental results on full key recovery

Target	Facility	Error rate	Input	Output	Thread (Collision)	Time (Collision)	RAM (Collision)	$L_{\rm FFT}$	Recovered MSBs
NIST P-192 NIST P-192 sect163r1 sect163r1	AWS EC2 AWS EC2 Cluster Workstation	0 1% 0 2.7%	2^{29} 2^{35} 2^{23} 2^{24}	2^{29} 2^{30} 2^{27} 2^{29}	96×24 96×24 16×16 48	113h 52h 7h 42h	492GB 492GB 80GB 250GB	2^{38} 2^{37} 2^{35} 2^{34}	39 39 36 35

- Attack on sect163r1 is even feasible with a laptop.

- Securely implementing brittle cryptographic algorithms is still hard.
- **Don't** underestimate even less than 1-bit of nonce leakage!
- Interesting connection between the HNP and GBP (from symmetric key crypto)
- Future work:
- More list sum algorithms and tradeoffs?
- Improvements to FFT computation?
- Other sources of small leakage?

• Step 1. Quantify the modular bias of randomness K by defining a bias function $Bias_q(K)$. • Improvement 1 Analyzed the behavior $Bias_q(K)$ when k's MSB is biased with probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of $Bias_q(K)$ (by computing FFT)

• Improvement 2 Established unified time-memory-data tradeoffs by applying \mathcal{K} -list sum algorithm for the GBP!

Figure 3. Time–Data tradeoffs when memory is fixed to 2^{35} .

• Optimized data complexity obtained by solving the linear programming problem. Paper has various tradeoff graphs and improved complexity estimates for 2-3 bits bias.

• Attack on P-192 is made possible by our highly optimized parallel implementation.

• Recovering remaining bits is much cheaper in Bleichenbacher's framework.

Attacks on P-224 with 1-bit bias or P-256 with 2-bit bias are also tractable.

Main takeaways