Security of Hedged Fiat–Shamir Signatures under Fault Attacks

Eurocrypt 2020
ePrint https://ia.cr/2019/956

Diego F. Aranha1 Claudio Orlandi1
Akira Takahashi1 Greg Zaverucha2

May 14, 2020

1Aarhus University, Denmark
2Microsoft Research, United States
Goal of Our Work

• Formally analyze the fault-resilience of existing Fiat–Shamir signatures
 • Provable security methodology.
 • Motivated by actual fault attacks on concrete schemes.
1. Randomized signature: $r \leftarrow \text{RNG}(\cdot)$

- Nonces don’t need to be uniform: low-quality RNG or counter should suffice.
- Randomness r doesn’t repeat on the same message.

To what extent are hedged FS signatures secure against fault attacks?
1. Randomized signature: \(r \leftarrow \text{RNG}(\cdot) \) 😞 Risk of randomness bias!

- Nonces don’t need to be uniform: low-quality RNG or counter should suffice.
- Randomness \(r \) doesn’t repeat on the same message.

To what extent are hedged FS signatures secure against fault attacks?
How to Protect Fiat–Shamir from Randomness Failure?

1. Randomized signature: \(r \leftarrow \text{RNG}(\cdot) \) 😞 Risk of randomness bias!

2. Deterministic signature: \(r \leftarrow H(sk, m) \)

- Nonces don’t need to be uniform: low-quality RNG or counter should suffice.
- Randomness \(r \) doesn’t repeat on the same message.

To what extent are hedged FS signatures secure against fault attacks?
How to Protect Fiat–Shamir from Randomness Failure?

1. Randomized signature: \(r \leftarrow \text{RNG}(\cdot) \)
 - Risk of randomness bias!

2. Deterministic signature: \(r \leftarrow H(sk, m) \)
 - Vulnerable to fault attacks!

- Nonces don’t need to be uniform: low-quality RNG or counter should suffice.
- Randomness \(r \) doesn’t repeat on the same message.

To what extent are hedged FS signatures secure against fault attacks?
How to Protect Fiat–Shamir from Randomness Failure?

1. Randomized signature: \(r \leftarrow \text{RNG}(\cdot) \) 🙁 Risk of randomness bias!
2. Deterministic signature: \(r \leftarrow H(sk, m) \) 😞 Vulnerable to fault attacks!
3. Hedged signature: \(r \leftarrow H(sk, m, nonce) \) 😊 Seems secure?

- Nonces don’t need to be uniform: low-quality RNG or counter should suffice.
- Randomness \(r \) doesn’t repeat on the same message.

To what extent are hedged FS signatures secure against fault attacks?
Contributions

• Formal attacker model and security notions to capture the corrupted nonces and previous fault attacks.
• Proved that hedged FS schemes in general are secure against single-bit fault attacks on many intermediate wire values in the signing algorithm.
 + Negative results for a few wires.
• Application to concrete instantiations.
 • XEdDSA: Hedged variant of EdDSA used in Signal
 • Picnic2: NIST PQC competition round 2 candidate
Overview of Our Results

If A doesn’t query the same (m, n) pair more than once
- ✓ secure against single-bit flip/stuck-at faults.
- ✗ insecure against single-bit flip/stuck-at faults.
- ★ security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).
If \mathcal{A} doesn’t query the same (m, n) pair more than once

- ✓ secure against single-bit flip/stuck-at faults.
- ✗ insecure against single-bit flip/stuck-at faults.
- ★ security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).
Overview of Our Results

If \mathcal{A} doesn’t query the same (m, n) pair more than once

- ✓ secure against single-bit flip/stuck-at faults.
- ✗ insecure against single-bit flip/stuck-at faults.
- ★ security only holds for signatures from subset-revealing ID (e.g., Picnic).
- ▲ security only holds for signatures from input-delayed ID (e.g., XEdDSA).
Conclusion

- Hedged FS is provably more resilient than the randomized/deterministic FS!
 - Negative results show where practitioners pay the most attention.
- Open questions
 - Extension to more advanced fault attacker model.
 - Multi-bit/position faults. Partially handled by Fischlin and Günther (CT-RSA’20) for generic signatures.
 - Fault within Com, Resp or public parameters.
 - Model for instruction skipping faults.
 - Fault + QROM.
 - Lattice signatures from FS with aborts.

Thank you!

More details at https://ia.cr/2019/956