Sequential Half-Aggregation of Lattice-Based Signatures

ESORICS 2023

Katharina Boudgoust and Akira Takahashi

Digital Signatures

Digital Signatures

Aggregate Signature [BGLS03]

Motivation

Hash-then-Sign Fiat-Shamir Fast-Fourier Lattice-based Compact Signatures over NTRU

- Lattice-based Cryptography: Popular paradigm for post-quantum cryptography
- NIST is standardizing two lattice-based signatures: Falcon and Dilithium
- Limited solutions to aggregate Fiat-Shamir signatures (including Dilithium):
 - Expensive generic solutions
 - Or need several rounds of interaction
 - Or larger signature than the naive concatenation!

Our Results

Hash-then-Sign Fiat-Shamir Fast-Fourier Lattice-based Compact Signatures over NTRU

1. Forgery attacks on two aggregate signatures based on the NIST candidates

- Falcon-based sequential (half-)aggregate signature [WW19, ProvSec]
- Dilithium-based interactive multi/aggregate signature [FH20, ProvSec]
- 2. **New** sequential Fiat-Shamir (half-)aggregate signature
 - With a signature size < naive concatenation (caveat: low compression rate)
 - Without invoking generic solutions

3-Move Identification from Module Lattices

- Commit $\mathbf{r} \leftarrow D$ $\mathbf{u} := \mathbf{A}\mathbf{r}$ u Challenge $c \leftarrow C \subset R$ С Response $\mathbf{z} := c \cdot \mathbf{sk} + \mathbf{r}$ Accept iff If $RejSamp(\mathbf{z}) = 0$: \mathbf{Z} $\mathbf{A}\mathbf{z} = c \cdot \mathbf{p}\mathbf{k} + \mathbf{u}$ Abort $\wedge \|\mathbf{z}\| \le B$ $Verifier(pk = \mathbf{A} \cdot \mathbf{sk})$ Prover(sk)
- Defined in $R = \mathbb{Z}[X]/(f(X))$ and $R_q = R/qR$
- Random public matrix $\mathbf{A} = [\bar{\mathbf{A}}|\mathbf{I}] \in R_q^{k imes (\ell+k)}$
- "Small" secret sk $\in S_{\eta}^{\ell+k}$

3-Move Identification from Module Lattices

Commit $\mathbf{r} \leftarrow D$ $\mathbf{u} := \mathbf{A}\mathbf{r}$ u Challenge $c \leftarrow C \subset R$ С Response $\mathbf{z} := c \cdot \mathbf{sk} + \mathbf{r}$ Accept iff If $RejSamp(\mathbf{z}) = 0$: \mathbf{Z} $\mathbf{A}\mathbf{z} = c \cdot \mathbf{p}\mathbf{k} + \mathbf{u}$ Abort $\wedge \|\mathbf{z}\| \le B$ $Verifier(pk = \mathbf{A} \cdot \mathbf{sk})$ Prover(sk)

- sk, r, and c are small \rightsquigarrow z is also small
- \bullet RejSamp forces \mathbf{z} to be independent of sk

- Defined in $R = \mathbb{Z}[X]/(f(X))$ and $R_q = R/qR$
- Random public matrix $\mathbf{A} = [\bar{\mathbf{A}}|\mathbf{I}] \in R_q^{k imes (\ell+k)}$
- "Small" secret sk $\in S_{\eta}^{\ell+k}$

8

3-Move Identification from Module Lattices

Commit Short Integer Solution (SIS) Problem $\mathbf{r} \leftarrow D$ $\mathbf{u} := \mathbf{A}\mathbf{r}$ Given $\bar{\mathbf{A}} \leftarrow_{\$} R_a^{k imes \ell}$, find $\mathbf{x} \in R^{\ell+k}$ u s.t. $\|\mathbf{x}\| \leq \beta \wedge [\bar{\mathbf{A}}|\mathbf{I}]\mathbf{x} = \mathbf{0} \mod q$ Challenge $c \leftarrow C \subset R$ С Response • sk, r, and c are small \rightsquigarrow z is also small $\mathbf{z} := c \cdot \mathbf{sk} + \mathbf{r}$ • RejSamp forces z to be independent of sk Accept iff If $\operatorname{RejSamp}(\mathbf{z}) = 0$: \mathbf{Z} $\mathbf{A}\mathbf{z} = c \cdot \mathbf{p}\mathbf{k} + \mathbf{u}$ Abort $\wedge \|\mathbf{z}\| \le B$ • Defined in $R = \mathbb{Z}[X]/(f(X))$ and $R_q = R/qR$ • Random public matrix $\mathbf{A} = [\bar{\mathbf{A}}|\mathbf{I}] \in R_q^{k \times (\ell+k)}$ • "Small" secret sk $\in S_n^{\ell+k}$

Prover(sk)

 $Verifier(pk = \mathbf{A} \cdot \mathbf{sk})$

Fiat-Shamir Signature from Module Lattices

Commit

Short Integer Solution (SIS) Problem

Given $ar{\mathbf{A}} \leftarrow_{\$} R^{k imes \ell}_q$, find $\mathbf{x} \in R^{\ell+k}$

s.t. $\|\mathbf{x}\| \leq \beta \wedge [\bar{\mathbf{A}}|\mathbf{I}]\mathbf{x} = \mathbf{0} \mod q$

• sk, r, and c are small \rightsquigarrow z is also small

- RejSamp forces \mathbf{z} to be independent of sk
- Defined in $R = \mathbb{Z}[X]/(f(X))$ and $R_q = R/qR$
- Random public matrix $\mathbf{A} = [\bar{\mathbf{A}}|\mathbf{I}] \in R_q^{k \times (\ell+k)}$
- "Small" secret $\mathsf{sk} \in S_n^{\ell+k}$

 $\mathbf{r} \leftarrow D$ $\mathbf{u} := \mathbf{A}\mathbf{r}$ Hash $c := \mathsf{H}(\mathbf{u}, m, \mathsf{pk})$

Response $\mathbf{z} := c \cdot \mathbf{sk} + \mathbf{k}$

$$\mathbf{z} := c \cdot \mathbf{sk} + \mathbf{r}$$
If RejSamp(\mathbf{z}) = 0:
Abort
$$\sigma = (c, \mathbf{z})$$

$$\sigma = H(\mathbf{u}, m, \mathbf{pk})$$

$$\wedge \|\mathbf{z}\| \le B$$

 $Verifier(pk = \mathbf{A} \cdot \mathbf{sk})$

SNARK/BARG [DGKV22,ACL+22]

Pros	Cons
 Generic solution Compact σ̃ No modification to Sign 	 Expensive Aggregator Heuristic security proof if Vrfy calls the RO H

SNARK/BARG [DGKV22,ACL+22]

Pros	Cons
 Generic solution Compact σ̃ No modification to Sign 	 Expensive Aggregator Heuristic security proof if Vrfy calls the RO H
Interactive Aggregation [ES16,BK20,DOTT21,FH20,]	
Pros	Cons
• $ \tilde{\sigma} = O(\log^c n)$	 2-3 rounds of interaction between all signers Leaks sk₁ if instantiated

with Dilithium (this work)

 $ilde{c} = \mathsf{H}(\mathbf{u}_1 + \mathbf{u}_2, m_1, m_2, \mathsf{pk}_1, \mathsf{pk}_2, ilde{\mathbf{z}} = \mathbf{z}_1 + \mathbf{z}_2$

 $\tilde{\mathbf{z}} = \mathbf{z}_1 + \mathbf{z}_2$

SNARK/BARG [DGKV22,ACL+22]

/ L	· · · J
Pros	Cons
 Generic solution Compact σ No modification to Sign 	 Expensive Aggregator Heuristic security proof if Vrfy calls the RO H
Interactive Aggregation [ES16,BK20,DOTT21,FH20,]	
Pros	Cons
• $ \tilde{\sigma} = O(\log^c n)$	 2-3 rounds of interaction between all signers Leaks sk₁ if instantiated with Dilithium (this work)

13

Can We Aggregate the u_i -parts?

Can We Aggregate the u_i -parts?

Sequential Aggregate Signature (SAS) [LMRS04]

 L_2, σ_2

- Signers sequentially update σ_i cf. cert chain, BGPsec, etc.
- An evolving ordered set L_i

 L_1, σ_1

 $\operatorname{Sign}_{\mathsf{sk}_1}(\epsilon, m_1, L_0)$

 $L_i = \{(m_1, \mathsf{pk}_1), \dots, (m_i, \mathsf{pk}_i))\}$

- Known constructions from trapdoors, pairing, etc.
- Recent Schnorr-based SAS (Chen-Zhao, ESORICS'22)

 $\operatorname{Sign}_{\operatorname{sk}_2}(\sigma_1, m_2, L_1)$

 \rightsquigarrow Can we adapt it to lattice-based FS?

Our SAS from Lattice-based FS

Our SAS from Lattice-based FS

Commit $\mathbf{r}_1 \leftarrow D$ $\mathbf{u}_1 := \mathbf{A}\mathbf{r}_1$ $\tilde{\mathbf{u}}_1 := \mathbf{u}_1$ Hash Hash $L_1 := (m_1, \mathsf{pk}_1)$ $c_1 := \mathsf{H}(\mathbf{u}_1, L_1, \epsilon)$ Response $\mathbf{z}_1 := c_1 \cdot \mathbf{sk}_1 + \mathbf{r}_1$ If $\operatorname{RejSamp}(\mathbf{z}_1) = 0$: Go to Commit $\sigma_1 := (\tilde{\mathbf{u}}_1, \mathbf{z}_1)$

Our SAS from Lattice-based FS

 L_2, σ_2

Commit $\mathbf{r}_1 \leftarrow D$ $\mathbf{u}_1 := \mathbf{Ar}_1$ $\tilde{\mathbf{u}}_1 := \mathbf{u}_1$ Hash $L_1 := (m_1, \mathsf{pk}_1)$ $c_1 := \mathsf{H}(\mathbf{u}_1, L_1, \epsilon)$ Response $\mathbf{z}_1 := c_1 \cdot \mathbf{s} \mathbf{k}_1 + \mathbf{r}_1$ If $\operatorname{RejSamp}(\mathbf{z}_1) = 0$: Go to Commit

 $\sigma_1 := (\tilde{\mathbf{u}}_1, \mathbf{z}_1)$

 $\operatorname{Sign}_{\mathsf{sk}_1}(\epsilon, m_1, L_0)$

 L_1, σ_1

Commit $\mathbf{r}_2 \leftarrow D$ $\mathbf{u}_2 := \mathbf{Ar}_2$ $| ilde{\mathbf{u}}_2 := ilde{\mathbf{u}}_1 + \mathbf{u}_2|$ Hash $|L_2 := L_1 ||(m_2, \mathsf{pk}_2)|$ $c_2 := \mathsf{H}(\tilde{\mathbf{u}}_2, L_2, \mathbf{z}_1)$ Response $\mathbf{z}_2 := c_2 \cdot \mathbf{sk}_2 + \mathbf{r}_2$ If $\operatorname{RejSamp}(\mathbf{z}_2) = 0$: Go to Commit $\sigma_2 := (\tilde{\mathbf{u}}_2, \mathbf{z}_1, \mathbf{z}_2)$

 $\operatorname{Sign}_{\operatorname{sk}_2}(\sigma_1, m_2, L_1)$

Parse
$$\sigma_n = (\tilde{\mathbf{u}}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

For $i = n, \dots, 1$:
Check $||\mathbf{z}_i|| \le B$
 $c_i := H(\tilde{\mathbf{u}}_i, L_i, \mathbf{z}_{i-1})$
 $\mathbf{u}_i := \mathbf{A}\mathbf{z}_i - c_i \cdot \mathbf{p}\mathbf{k}_i$
 $\tilde{\mathbf{u}}_{i-1} := \tilde{\mathbf{u}}_i - \mathbf{u}_i$
Check $\tilde{\mathbf{u}}_0 = \mathbf{0}$
 σ_n

 σ_n, L_n

 $\operatorname{Sign}_{\operatorname{sk}_n}(\sigma_{n-1}, m_n, L_{n-1})$

Security and Performance Estimates

Commit $\mathbf{r}_1 \leftarrow D$ $\mathbf{u}_1 := \mathbf{Ar}_1$ $\tilde{\mathbf{u}}_1 := \mathbf{u}_1$ Hash $L_1 := (m_1, \mathsf{pk}_1)$ $c_1 := \mathsf{H}(\mathbf{u}_1, L_1, \epsilon)$ Response

 $\mathbf{z}_1 := c_1 \cdot \mathsf{sk}_1 + \mathbf{r}_1$ If RejSamp $(\mathbf{z}_1) = 0$: Go to Commit $\sigma_1 := (\tilde{\mathbf{u}}_1, \mathbf{z}_1)$ Commit $\mathbf{r}_2 \leftarrow D$ $\mathbf{u}_2 := \mathbf{Ar}_2$ $| ilde{\mathbf{u}}_2 := ilde{\mathbf{u}}_1 + \mathbf{u}_2|$ Hash $L_2 := L_1 ||(m_2, \mathsf{pk}_2)|$ $c_2 := \mathsf{H}(\tilde{\mathbf{u}}_2, L_2, \mathbf{z}_1)$ Response $\mathbf{z}_2 := c_2 \cdot \mathbf{sk}_2 + \mathbf{r}_2$ If $\operatorname{RejSamp}(\mathbf{z}_2) = 0$: Go to Commit $\sigma_2 := (\tilde{\mathbf{u}}_2, \mathbf{z}_1, \mathbf{z}_2)$

Provable Security

- If the single-user FS lattice signature is EUF-CMA secure then our SAS is also secure (in the ROM)
- Tight security reduction
- No need to change the original parameters

Security and Performance Estimates

 L_2, σ_2

Commit $\mathbf{r}_{1} \leftarrow D$ $\mathbf{u}_{1} := \mathbf{Ar}_{1}$ $\tilde{\mathbf{u}}_{1} := \mathbf{u}_{1}$ Hash $L_{1} := (m_{1}, \mathsf{pk}_{1})$ $c_{1} := \mathsf{H}(\mathbf{u}_{1}, L_{1}, \epsilon)$ Response $\mathbf{z}_{1} := c_{1} \cdot \mathsf{sk}_{4} + \mathbf{r}_{1}$

 $\mathbf{z}_1 := c_1 \cdot \mathsf{sk}_1 + \mathbf{r}_1$ If RejSamp $(\mathbf{z}_1) = 0$: Go to Commit $\sigma_1 := (\tilde{\mathbf{u}}_1, \mathbf{z}_1)$

 $\operatorname{Sign}_{\mathsf{sk}_1}(\epsilon, m_1, L_0)$

 L_1, σ_1

Commit $\mathbf{r}_2 \leftarrow D$ $\mathbf{u}_2 := \mathbf{A}\mathbf{r}_2$ $| ilde{\mathbf{u}}_2 := ilde{\mathbf{u}}_1 + \mathbf{u}_2|$ Hash $L_2 := L_1 ||(m_2, \mathsf{pk}_2)|$ $c_2 := \mathsf{H}(\tilde{\mathbf{u}}_2, L_2, \mathbf{z}_1)$ Response $\mathbf{z}_2 := c_2 \cdot \mathbf{sk}_2 + \mathbf{r}_2$ If $\operatorname{RejSamp}(\mathbf{z}_2) = 0$: Go to Commit $\sigma_2 := (\tilde{\mathbf{u}}_2, \mathbf{z}_1, \mathbf{z}_2)$

 $\operatorname{Sign}_{\operatorname{sk}_2}(\sigma_1, m_2, L_1)$

Provable Security

- If the single-user FS lattice signature is EUF-CMA secure then our SAS is also secure (in the ROM)
- Tight security reduction
- No need to change the original parameters

Performance Estimates

- Better than the naive concatenation, but not dramatically
- Saves $\approx 1\%$ of the signature size (w/ Dilithium)
- Open question: optimal compression rate (i.e. 50%) with other FS lattice schemes?

Wrapping up

- Constructed SAS tailored to Fiat-Shamir lattice signatures, with concrete size estimates based on the Dilithium parameter sets
- Paper compares with an existing hash-then-sign SAS
 - Turned out a Falcon-based SAS also only saves ~ 3%
- Paper describes forgery attacks against existing AS schemes from Falcon and Dilithium
 - Illustrates the sensitivity of various optimization techniques
- Take away: Non-trivial aggregation of lattice-based signatures is **hard**!
- Open questions:
 - Can we improve the compression rate for FS-based (S)AS?
 - How efficient can the generic solutions be for aggregating Falcon?

Wrapping up

- Constructed SAS tailored to Fiat-Shamir lattice signatures, with concrete size estimates based on the Dilithium parameter sets
- Paper compares with an existing hash-then-sign SAS
 - Turned out a Falcon-based SAS also only saves ~ 3%
- Paper describes forgery attacks against existing AS schemes from Falcon and Dilithium
 - Illustrates the sensitivity of various optimization techniques
- Take away: Non-trivial aggregation of lattice-based signatures is **hard**!
- Open questions:
 - Can we improve the compression rate for FS-based (S)AS?
 - How efficient can the generic solutions be for aggregating Falcon?

Thank you!

ePrint 2023/159 for details

Insecurity of Interactive Aggregation of Dilithium

Commit $\mathbf{r} \leftarrow D$ $\mathbf{u} := \mathbf{Ar}$ $\mathbf{u}' := \mathsf{HighBit}(\mathbf{u})$

 $\begin{aligned} &\mathsf{Hash}\\ c := \mathsf{H}(\mathbf{u}', m, \mathsf{pk})\\ &\mathsf{Response}\\ \mathbf{z} := c \cdot \mathbf{s_1} + \mathbf{r}\\ &\mathsf{If} \ \mathsf{RejSamp}(\mathbf{z}) = 0:\\ &\mathsf{Go} \ \mathsf{to} \ \mathsf{Commit}\\ &\sigma := (c, \mathbf{z}) \end{aligned}$

Optimization Technique in Dilithium

 $\bullet\,$ Drop the lower bits of ${\bf u}$ while preserving correctness:

 $\begin{aligned} \mathsf{HighBit}(\mathbf{Az} - c \cdot \mathsf{pk}) &= \mathsf{HighBit}(\mathbf{Ar} - c \cdot \mathbf{s}_2) \\ &\approx \mathsf{HighBit}(\mathbf{u}) \end{aligned}$

Signer($sk = (s_1, s_2)$, $pk = As_1 + s_2$)

Insecurity of Interactive Aggregation of Dilithium

Optimization Technique in Dilithium

• Drop the lower bits of **u** while preserving correctness: HighBit($\mathbf{Az} - c \cdot \mathbf{pk}$) = HighBit($\mathbf{Ar} - c \cdot \mathbf{s}_2$) \approx HighBit(\mathbf{u})

Interactive Dilithium Aggregation

- $\bullet\,$ First round of interaction reveals ${\bf u}$ in the clear
- If \mathbf{u} is known, \mathbf{s}_2 can be recovered!

 $\mathbf{u} - (\mathbf{A}\mathbf{z} - c \cdot \mathsf{pk}) = c \cdot \mathbf{s}_2$

 $\bullet~\mathbf{A}$ is tall \rightsquigarrow recovering \mathbf{s}_1 is easy

Insecurity of Interactive Aggregation of Dilithium

Commit $\mathbf{r} \leftarrow D$ m **u** $\mathbf{u} := \mathbf{Ar}$ $m^*\mathbf{u}^*$ $\mathbf{u}' := \mathsf{HighBit}(\mathbf{u} + \mathbf{u}^*)$ Hash $c := \mathsf{H}(\mathbf{u}', m, m^*, \mathsf{pk}, \mathsf{pk}^*)$ Response $\mathbf{z} := c \cdot \mathbf{s}_1 + \mathbf{r}$ \mathbf{Z} If $\operatorname{RejSamp}(\mathbf{z}) = 0$: \mathbf{z}^* Go to Commit $\sigma := (c, \mathbf{z})$ Signer($sk = (s_1, s_2), pk = As_1 + s_2$)

 $\begin{aligned} \mathsf{HighBit}(\mathbf{Az} - c \cdot \mathsf{pk}) &= \mathsf{HighBit}(\mathbf{Ar} - c \cdot \mathbf{s_2}) \\ &\approx \mathsf{HighBit}(\mathbf{u}) \end{aligned}$ Interactive Dilithium Aggregation

Optimization Technique in Dilithium

• Drop the lower bits of **u** while preserving correctness:

- $\bullet\,$ First round of interaction reveals ${\bf u}$ in the clear
- If \mathbf{u} is known, \mathbf{s}_2 can be recovered!

 $\mathbf{u} - (\mathbf{A}\mathbf{z} - c \cdot \mathsf{pk}) = c \cdot \mathbf{s}_2$

 $\bullet~\mathbf{A}$ is tall \rightsquigarrow recovering \mathbf{s}_1 is easy

References

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. EUROCRYPT 2003.

[LMRS04] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from trapdoor permutations. EUROCRYPT 2004

[CZ22] Y. Chen and Y. Zhao. Half-aggregation of schnorr signatures with tight reductions. ESORICS 2022.

[WW19] Z. Wang and Q. Wu. A practical lattice-based sequential aggregate signature. ProvSec 2019.

[ES16] R. El Bansarkhani and J. Sturm. An efficient lattice-based multisignature scheme with applications to bitcoins. CANS 2016.

[FH20] M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisignature scheme in quantum random oracle model. ProvSec 2020.

[BR23] K. Boudgoust and A. Roux-Langlois. Compressed linear aggregate signatures based on module lattices. The Computer Journal 2023.

[DOTT21] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices. PKC 2021 & Journal of Cryptology.

[BK20] D. Boneh and S. Kim. One-time and interactive aggregate signatures from lattices.

Icons are designed by Freepik. http://www.freepik.com/