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Introduction



Implementation Attacks against ECC

• Elliptic curve crypto is widely used in many devices

• We live in the era of IoT
• Threat of physical attacks on implementations of ECC
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Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])

• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:

1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.
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Limitation of Invalid Curve Attacks

• Simple countermeasure: point validitation of the input
P = (x, y)

y2 ?
= x3 + Ax + B

• Are invalid curve attacks dead?

– NO!
• where there’s crypto, there’s a risk of fault attacks
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Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6



Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6



Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6



Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES

• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman

• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!
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Theory — Singular/Supersingular
Curve Point Decompression Attacks



SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:

• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant
• Achievable with low-cost single fault injection
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Point Compression/Decompression

• Consider a short Weierstrass form of an elliptic curve
defined over Fp:

E/Fp : y2 = x3 + Ax + B

• y-coordinate is determined by x up to sign:

y = +
√

x3 + Ax + B or −
√

x3 + Ax + B.

• Only the sign of y (i.e. whether y is even or odd in Fp)
needs to be stored

• Typically used to compress public keys, but sometimes
applied to base points too
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Example: secp256k1 Bitcoin curve

Uncompressed base point [Sta10, §2.4.1]

04 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798
483ADA77 26A3C465 5DA4FBFC 0E1108A8
FD17B448 A6855419 9C47D08F FB10D4B8
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Example: secp256k1 Bitcoin curve

Compressed base point [Sta10, §2.4.1]

02 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798
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Singular Curve Point Decompression Attack
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Attack Model

1. Compressed base point is stored in a cryptographic device
2. Base point is decompressed before passed to scalar

multiplication algorithm
3. Adversary injects a fault

; Can skip a few instructions
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Instruction Skipping Fault on Base Point Decompression (I)

Algorithm Point Decompression Algorithm
Input: x ∈ Fp, ȳ ∈ {0x02,0x03}, A, B, p
Output: P = (x, y): uncompressed curve point
1: y← x2

2: y← y + A ▷ A = 0 for secp k and BN curves
3: y← y× x
4: y← y + B

ESkip!

5: y← ±√y
6: Validate coordinates: y2 ?

= x3 + Ax + B

ESkip!

7: return (x, y)
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Instruction Skipping Fault on Base Point Decompression (II)

• y-coordinate is incorrectly reconstructed:

ỹ2 = x3 mod p.

• The perturbed faulty base point P̃ = (x, ỹ) is reliably on
singular curve Ẽ!

E
x

y

E : y2 = x3 + B

P

x

y

Ẽ : y2 = x3

P̃
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Isomorphism between Singular Curve and Additive Group F+
p

Theorem
Let F+

p be the additive group of Fp and Ẽ(Fp) be the set of
nonsingular Fp-rational points on Ẽ including the point at
infinity O = (0 : 1 : 0). Then the map ϕ : Ẽ(Fp)→ F+

p with

(x, y) 7→ x/y
O 7→ 0,

is a group isomorphism between Ẽ(Fp) and F+
p .
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How to Recover the Secret k

• Let [k]P̃ = (x̃k, ỹk) be a faulty output

• Then using the isomorphism ϕ in Theorem

x̃k/ỹk = ϕ([k]P̃) = ϕ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= ϕ(P̃) + . . .+ ϕ(P̃)
= kx/ỹ.

• Problem degenerates to DLP in F+
p (trivial!)

• k can be simply recovered by computing (ỹx̃k)/(xỹk) in Fp

16
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What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!
• We can apply Menezes–Okamoto–Vanstone (MOV) attack!
• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .
• Tractable for most standardized parameters
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Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18
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Practice — Attacking ECDSA and
ECIES in OpenSSL



OpenSSL EC Key Files

• OpenSSL’s ecparam command allows users to generate EC
key files with:

• Explicit curve parameters (-param_enc explicit)
• Compressed base point (-conv_form compressed)
• Compressed public key (-conv_form compressed)
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How to Attack with a Single Fault

Input: Domain parameters in raw binary formats
Output: Domain parameters in BIGNUM type
1: p←BN_bin2bn(pbin)
2: A←BN_bin2bn(Abin)

3: B←BN_bin2bn(Bbin)

4: x←BN_bin2bn(xbin)
5: P← Decomp(P̄ = (x, ȳ), p,A,B)

6: Validate y2 ?
= x3 + Ax + B

7: return (p,A,B,P)

• BIGNUM: OpenSSL’s data structure representing a
multiprecision integer

• BN_bin2bn(): utility function which converts a raw byte
array to a BIGNUM object 20
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How to Attack with a Single Fault

Input: Domain parameters in raw binary formats
Output: Domain parameters in BIGNUM type
1: p←BN_bin2bn(pbin)
2: A←BN_bin2bn(Abin)

3: 0←BN_bin2bn(Bbin) EOur fault
4: x←BN_bin2bn(xbin)
5: P̃← Decomp(P̄ = (x, ȳ), p,A, 0)
6: Validate y2 ?

= x3 + Ax + 0
7: return (p,A, 0, P̃)

• BIGNUM: OpenSSL’s data structure representing a
multiprecision integer

• BN_bin2bn(): utility function which converts a raw byte
array to a BIGNUM object 20



Realization of Our Attack Model

• Actual fault attack
targets a certain
CPU instruction

• We identified 4
possibly vulnerable
instructions in
BN_bin2bn()’s
assembly code
when compiled in
Rasperry Pi

• Quick experiment:
comment out each
target line ; the
function returned 0!

21
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Effect on ECDSA

Algorithm ECDSA signature generation [JMV01]
Input: P: base point of prime order n, d ∈ Z/nZ: secret key,

Q = [d]P: public key, M ∈ {0, 1}∗: message to be signed
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (xk, yk)← [k]P
3: r← xk mod n
4: h← H(M)

5: s← k−1(h + rd) mod n
6: return (r, s)
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2: (x̃k, ỹk)← [k]P̃
3: r̃← x̃k mod n
4: h← H(M)

5: s̃← k−1(h + r̃d) mod n
6: return (̃r, s̃)

22



Effect on ECDSA

Algorithm ECDSA signature generation [JMV01]
Input: P: base point of prime order n, d ∈ Z/nZ: secret key,

Q = [d]P: public key, M ∈ {0, 1}∗: message to be signed
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (x̃k, ỹk)← [k]P̃
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Once k is obtained, the secret key d is directly exposed:

d = (̃sk− h)/r̃ mod n 22



Effect on SM2-ECIES (for OpenSSL ver. ≥ 1.1.1 )

Algorithm SM2-ECIES encryption [SL14]
Input: Q ∈ E(Fp): public key, M ∈ {0, 1}∗: plaintext
Output: ciphertext (C1,C2,C3)

1: k←$Z/nZ
2: C1 = (xk, yk)← [k]P
3: (x′, y′)← [k]Q
4: K← KDF(x′||y′, |M|)
5: C2 ← M⊕K
6: C3 ← H(x′||y′||M)

7: return (C1,C2,C3)

• Once K is obtained, the plaintext can be recovered:

M = C2 ⊕K.
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Practical Experiment

• Target:
• Raspberry Pi Model B
• OpenSSL 1.1.1: latest release as of November 2018
• ECDSA/SM2-ECIES over secp256k1

• ChipWhisperer-Lite side-channel/fault analysis evaluation
board
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Experimental Setup (I)

Figure 1: ChipWhisperer-Lite evaluation board connected to
Raspberry Pi Model B
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Experimental Setup (II)

Figure 2: Overview of the experimental setup 26



Experimental Setup (III)

• Inserted a single voltage glitch

• Found the suitable parameters causing reliably
reproducible misbehavior of Raspberry Pi:

• Enable-only glitches repeated 127 times
• Offset 10 clock cycles
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Experimental Result

Success No effect Program crash OS crash Total

95 813 89 3 1000

• ≈ 10% success rate
• Still serious enough since the adversary requires only one
successful instance to recover the secret

28



Beyond OpenSSL



Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:

✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP
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Conclusion



Conclusion

• Brought the invalid curve attacks closer to practice with
the help of low-cost single fault injection

• Demonstrated the attacks in a practical scenario
• OpenSSL installed in Raspberry Pi

• Lesson: Never apply point compression/decompression to
base points!
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Countermeasure & Future Work

• Suggestion

• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries
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Tack!

https://ia.cr/2019/400
[Fre]

Questions?

31
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