Degenerate Fault Attacks on Elliptic Curve Parameters in OpenSSL

IACR ePrint: 2019/400

Akira Takahashi¹ Mehdi Tibouchi² July 2, 2019

¹Aarhus University, Denmark

²NTT Secure Platform Laboratories and Kyoto University, Japan

1. Introduction

2. Theory — Singular/Supersingular Curve Point Decompression Attacks

- 3. Practice Attacking ECDSA and ECIES in OpenSSL
- 4. Beyond OpenSSL
- 5. Conclusion

Introduction

• Elliptic curve crypto is widely used in many devices

- Elliptic curve crypto is widely used in many devices
- We live in the era of IoT

- Elliptic curve crypto is widely used in many devices
- We live in the era of IoT \approx Insecurity of Things!

- Elliptic curve crypto is widely used in many devices
- We live in the era of IoT \approx Insecurity of Things!
- Threat of physical attacks on implementations of ECC

• Correctness attack against ECC (Antipa et al. [ABM+03])

- Correctness attack against ECC (Antipa et al. [ABM+03])
- Exploits careless implementations that do not check if the input point satisfies the predefined curve equation

- Correctness attack against ECC (Antipa et al. [ABM+03])
- Exploits careless implementations that do not check if the input point satisfies the predefined curve equation
- Basic strategy of the adversary:

- Correctness attack against ECC (Antipa et al. [ABM+03])
- Exploits careless implementations that do not check if the input point satisfies the predefined curve equation
- Basic strategy of the adversary:
 - 1. Pick some point \widetilde{P} on a weak curve \widetilde{E}

- Correctness attack against ECC (Antipa et al. [ABM+03])
- Exploits careless implementations that do not check if the input point satisfies the predefined curve equation
- Basic strategy of the adversary:
 - 1. Pick some point \widetilde{P} on a weak curve \widetilde{E}
 - 2. Send \widetilde{P} to the scalar multiplication algorithm

- Correctness attack against ECC (Antipa et al. [ABM+03])
- Exploits careless implementations that do not check if the input point satisfies the predefined curve equation
- Basic strategy of the adversary:
 - 1. Pick some point \widetilde{P} on a weak curve \widetilde{E}
 - 2. Send \widetilde{P} to the scalar multiplication algorithm
 - Compute partial bits of the secret scalar k by examining an invalid output [k] P.

$$y^2 \stackrel{?}{=} x^3 + Ax + B$$

$$y^2 \stackrel{?}{=} x^3 + Ax + B$$

• Are invalid curve attacks dead?

$$y^2 \stackrel{?}{=} x^3 + Ax + B$$

• Are invalid curve attacks dead? – NO!

$$y^2 \stackrel{?}{=} x^3 + Ax + B$$

- Are invalid curve attacks dead? NO!
 - where there's crypto, there's a risk of fault attacks

Fault Attacks

- Active physical attacks
 - cf. SCA is passive

Fault Attacks

- Active physical attacks
 - $\cdot\,$ cf. SCA is passive
- Tamper with the device to cause malfunction
 - Instruction skip
 - Memory bit-flip

Fault Attacks

- Active physical attacks
 - cf. SCA is passive
- Tamper with the device to cause malfunction
 - Instruction skip
 - Memory bit-flip
- Various methods:
 - Voltage glitch
 - Clock glitch
 - Optical attacks
 - Temperature attacks
 - Optical attacks
 - Magnetic attacks
 - etc.

1. Attack on ECDSA and ECIES

- 1. Attack on ECDSA and ECIES
 - Single fault injection leads to the recovery of secret key/plaintext with almost no computational cost

- 1. Attack on ECDSA and ECIES
 - Single fault injection leads to the recovery of secret key/plaintext with almost no computational cost
- 2. Attack on EC Diffie-Hellman

- 1. Attack on ECDSA and ECIES
 - Single fault injection leads to the recovery of secret key/plaintext with almost no computational cost
- 2. Attack on EC Diffie-Hellman
 - Requires several faulty ciphertexts, but can recover server's secret key with practical computational cost

- 1. Attack on ECDSA and ECIES
 - Single fault injection leads to the recovery of secret key/plaintext with almost no computational cost
- 2. Attack on EC Diffie-Hellman
 - Requires several faulty ciphertexts, but can recover server's secret key with practical computational cost
- 3. Experimentally verified that the attacks reliably work against OpenSSL installed in Raspberry Pi!

Theory — Singular/Supersingular Curve Point Decompression Attacks • Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])

- Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])
- Variant of invalid curve attacks, making use of fault injection

- Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])
- Variant of invalid curve attacks, making use of fault injection
- We generalize & improve the SCPD attack:

- Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])
- Variant of invalid curve attacks, making use of fault injection
- We generalize & improve the SCPD attack:
 - Applicable to almost all standardized curves

- Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])
- Variant of invalid curve attacks, making use of fault injection
- We generalize & improve the SCPD attack:
 - Applicable to almost all standardized curves
 - Exploit supersingular curves for targets with non-zero *j*-invariant

- Originally described as an attack on pairing-based crypto by Blömer and Günther (FDTC'15 [BG15])
- Variant of invalid curve attacks, making use of fault injection
- We generalize & improve the SCPD attack:
 - Applicable to almost all standardized curves
 - Exploit supersingular curves for targets with non-zero *j*-invariant
 - Achievable with low-cost single fault injection

Singular Curve Point Decompression Attack

Singular Curve Point Decompression Attack

Point Compression/Decompression

 Consider a short Weierstrass form of an elliptic curve defined over 𝔽_p:

$$E/\mathbb{F}_p: y^2 = x^3 + Ax + B$$
Point Compression/Decompression

 Consider a short Weierstrass form of an elliptic curve defined over F_p:

$$E/\mathbb{F}_p: y^2 = x^3 + Ax + B$$

• *y*-coordinate is determined by x up to sign:

$$y = +\sqrt{x^3 + Ax + B} \quad \text{or} \quad -\sqrt{x^3 + Ax + B}.$$

Point Compression/Decompression

 Consider a short Weierstrass form of an elliptic curve defined over F_p:

$$E/\mathbb{F}_p: y^2 = x^3 + Ax + B$$

• *y*-coordinate is determined by x up to sign:

$$y = +\sqrt{x^3 + Ax + B} \quad \text{or} \quad -\sqrt{x^3 + Ax + B}.$$

• Only the sign of y (i.e. whether y is even or odd in \mathbb{F}_p) needs to be stored

Point Compression/Decompression

 Consider a short Weierstrass form of an elliptic curve defined over F_p:

$$E/\mathbb{F}_p: y^2 = x^3 + Ax + B$$

• *y*-coordinate is determined by x up to sign:

$$y = +\sqrt{x^3 + Ax + B} \quad \text{or} \quad -\sqrt{x^3 + Ax + B}.$$

- Only the sign of y (i.e. whether y is even or odd in \mathbb{F}_p) needs to be stored
- Typically used to compress public keys, but sometimes applied to base points too

Compressed base point [Sta10, §2.4.1]

02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

Singular Curve Point Decompression Attack

1. Compressed base point is stored in a cryptographic device

- 1. Compressed base point is stored in a cryptographic device
- 2. Base point is decompressed before passed to scalar multiplication algorithm

- 1. Compressed base point is stored in a cryptographic device
- 2. Base point is decompressed before passed to scalar multiplication algorithm
- 3. Adversary injects a fault

- 1. Compressed base point is stored in a cryptographic device
- 2. Base point is decompressed before passed to scalar multiplication algorithm
- 3. Adversary injects a fault \rightsquigarrow Can skip a few instructions

Algorithm Point Decompression Algorithm

Input: $x \in \mathbb{F}_p, \, \bar{y} \in \{0 \times 02, 0 \times 03\}, \, A, \, B, \, p$ **Output:** P = (x, y): uncompressed curve point 1: $y \leftarrow x^2$ $\triangleright A = 0$ for secp k and BN curves 2: $y \leftarrow y + A$ 3: $y \leftarrow y \times x$ 4: $y \leftarrow y + B$ 5: $y \leftarrow \pm \sqrt{y}$ 6: Validate coordinates: $y^2 \stackrel{?}{=} x^3 + Ax + B$ 7: return (x, y)

Algorithm Point Decompression Algorithm

Input: $x \in \mathbb{F}_p$, $\bar{y} \in \{0x02, 0x03\}$, A, B, p **Output:** P = (x, y): uncompressed curve point 1: $y \leftarrow x^2$ $\triangleright A = 0$ for secp k and BN curves 2: $y \leftarrow y + A$ 3: $y \leftarrow y \times x$ 4: $y \leftarrow y + B \not\in Skip!$ 5: $y \leftarrow \pm \sqrt{y}$ 6: Validate coordinates: $y^2 \stackrel{?}{=} x^3 + Ax + B$ 7: return (x, y)

Algorithm Point Decompression Algorithm

Input: $x \in \mathbb{F}_p$, $\bar{y} \in \{0x02, 0x03\}$, A, B, p **Output:** P = (x, y): uncompressed curve point 1: $y \leftarrow x^2$ $\triangleright A = 0$ for secp k and BN curves 2: $y \leftarrow y + A$ 3: $y \leftarrow y \times x$ 4: $y \leftarrow y + B \not\in Skip!$ 5: $y \leftarrow \pm \sqrt{y}$ 6: Validate coordinates: $y^2 \stackrel{?}{=} x^3 + Ax + B \not \text{Skip!}$ 7: return (x, y)

Instruction Skipping Fault on Base Point Decompression (II)

• *y*-coordinate is incorrectly reconstructed:

$$\widetilde{y}^2 = x^3 \mod p.$$

• The perturbed faulty base point $\widetilde{P} = (x, \widetilde{y})$ is reliably on singular curve $\widetilde{E}!$

14

Theorem

Let \mathbb{F}_p^+ be the additive group of \mathbb{F}_p and $\widetilde{E}(\mathbb{F}_p)$ be the set of nonsingular \mathbb{F}_p -rational points on \widetilde{E} including the point at infinity O = (0:1:0). Then the map $\phi : \widetilde{E}(\mathbb{F}_p) \to \mathbb{F}_p^+$ with

$$(x, y) \mapsto x/y$$
$$O \mapsto 0,$$

is a group isomorphism between $\widetilde{E}(\mathbb{F}_p)$ and \mathbb{F}_p^+ .

Theorem

Let \mathbb{F}_p^+ be the additive group of \mathbb{F}_p and $\widetilde{E}(\mathbb{F}_p)$ be the set of nonsingular \mathbb{F}_p -rational points on \widetilde{E} including the point at infinity O = (0:1:0). Then the map $\phi : \widetilde{E}(\mathbb{F}_p) \to \mathbb{F}_p^+$ with

$$(x, y) \mapsto x/y$$
$$O \mapsto 0,$$

is a group isomorphism between $\widetilde{E}(\mathbb{F}_p)$ and \mathbb{F}_p^+ .

· Let $[k]\widetilde{P}=(\widetilde{x}_k,\widetilde{y}_k)$ be a faulty output

How to Recover the Secret k

- Let $[k]\widetilde{P} = (\widetilde{x}_k,\widetilde{y}_k)$ be a faulty output
- Then using the isomorphism ϕ in Theorem

$$\widetilde{x}_k/\widetilde{y}_k = \phi([k]\widetilde{P}) = \phi(\underbrace{\widetilde{P} + \ldots + \widetilde{P}}_k)$$

= $\phi(\widetilde{P}) + \ldots + \phi(\widetilde{P})$
= $kx/\widetilde{y}.$

How to Recover the Secret k

- Let $[k]\widetilde{P} = (\widetilde{x}_k,\widetilde{y}_k)$ be a faulty output
- Then using the isomorphism ϕ in Theorem

$$\widetilde{x}_k/\widetilde{y}_k = \phi([k]\widetilde{P}) = \phi(\underbrace{\widetilde{P} + \ldots + \widetilde{P}}_k)$$

= $\phi(\widetilde{P}) + \ldots + \phi(\widetilde{P})$
= $kx/\widetilde{y}.$

• Problem degenerates to DLP in \mathbb{F}_p^+ (trivial!)

How to Recover the Secret k

- Let $[k]\widetilde{P} = (\widetilde{x}_k,\widetilde{y}_k)$ be a faulty output
- Then using the isomorphism ϕ in Theorem

$$\widetilde{x}_k/\widetilde{y}_k = \phi([k]\widetilde{P}) = \phi(\underbrace{\widetilde{P} + \ldots + \widetilde{P}}_k)$$

= $\phi(\widetilde{P}) + \ldots + \phi(\widetilde{P})$
= $kx/\widetilde{y}.$

- Problem degenerates to DLP in \mathbb{F}_p^+ (trivial!)
- k can be simply recovered by computing $(\widetilde{y}\widetilde{x}_k)/(\widetilde{x}\widetilde{y}_k)$ in \mathbb{F}_p

Theorem (MOV attack)

Let E' be a supersingular curve over \mathbb{F}_p , $p \ge 5$. Then there exists an injective, efficiently computable group homomorphism

$$e_n: E'(\mathbb{F}_p) \to \mathbb{F}_{p^2}^*$$

which can be expressed in terms of the Weil pairing on E'.

Theorem (MOV attack)

Let E' be a supersingular curve over \mathbb{F}_p , $p \ge 5$. Then there exists an injective, efficiently computable group homomorphism

$$e_n: E'(\mathbb{F}_p) \to \mathbb{F}_{p^2}^*$$

which can be expressed in terms of the Weil pairing on E'.

• The curve

$$E': y^2 = x^3 + Ax$$

has $\#E'(\mathbb{F}_p) = p + 1$ and is supersingular if $p \equiv 3 \mod 4!$

Theorem (MOV attack)

Let E' be a supersingular curve over \mathbb{F}_p , $p \ge 5$. Then there exists an injective, efficiently computable group homomorphism

$$e_n: E'(\mathbb{F}_p) \to \mathbb{F}_{p^2}^*$$

which can be expressed in terms of the Weil pairing on E'.

• The curve

$$E': y^2 = x^3 + Ax$$

has $\#E'(\mathbb{F}_p) = p + 1$ and is supersingular if $p \equiv 3 \mod 4!$

• We can apply Menezes-Okamoto-Vanstone (MOV) attack!

Theorem (MOV attack)

Let E' be a supersingular curve over \mathbb{F}_p , $p \ge 5$. Then there exists an injective, efficiently computable group homomorphism

$$e_n: E'(\mathbb{F}_p) \to \mathbb{F}_{p^2}^*$$

which can be expressed in terms of the Weil pairing on E'.

• The curve

$$E': y^2 = x^3 + Ax$$

has $\#E'(\mathbb{F}_p) = p + 1$ and is supersingular if $p \equiv 3 \mod 4!$

- We can apply Menezes-Okamoto-Vanstone (MOV) attack!
- The DLP on E' is no harder than the DLP in the multiplicative group $\mathbb{F}_{p^2}^*$.

Theorem (MOV attack)

Let E' be a supersingular curve over \mathbb{F}_p , $p \ge 5$. Then there exists an injective, efficiently computable group homomorphism

$$e_n: E'(\mathbb{F}_p) \to \mathbb{F}_{p^2}^*$$

which can be expressed in terms of the Weil pairing on E'.

• The curve

$$E': y^2 = x^3 + Ax$$

has $\#E'(\mathbb{F}_p) = p + 1$ and is supersingular if $p \equiv 3 \mod 4!$

- We can apply Menezes-Okamoto-Vanstone (MOV) attack!
- The DLP on E' is no harder than the DLP in the multiplicative group $\mathbb{F}_{p^2}^*$.
- Tractable for most standardized parameters

- Requires a double fault to skip the point validation
 - Hard to realize
 - Especially on larger embedded platforms with high frequency chips and modern OSes

- Requires a double fault to skip the point validation
 - Hard to realize
 - Especially on larger embedded platforms with high frequency chips and modern OSes
- Previous work targeted an AVR microcontroller running the pairing-based BLS signature

- Requires a double fault to skip the point validation
 - Hard to realize
 - Especially on larger embedded platforms with high frequency chips and modern OSes
- Previous work targeted an AVR microcontroller running the pairing-based BLS signature
 - Not so widely used setting

- Requires a double fault to skip the point validation
 - Hard to realize
 - Especially on larger embedded platforms with high frequency chips and modern OSes
- Previous work targeted an AVR microcontroller running the pairing-based BLS signature
 - Not so widely used setting

Can SCPD attacks be more practical?

- Requires a double fault to skip the point validation
 - Hard to realize
 - Especially on larger embedded platforms with high frequency chips and modern OSes
- Previous work targeted an AVR microcontroller running the pairing-based BLS signature
 - Not so widely used setting

Can SCPD attacks be more practical?

Practice — Attacking ECDSA and ECIES in OpenSSL

• OpenSSL's **ecparam** command allows users to generate EC key files with:

- OpenSSL's **ecparam** command allows users to generate EC key files with:
 - Explicit curve parameters (-param_enc explicit)

- OpenSSL's **ecparam** command allows users to generate EC key files with:
 - Explicit curve parameters (-param_enc explicit)
 - Compressed base point (-conv_form compressed)

- OpenSSL's **ecparam** command allows users to generate EC key files with:
 - Explicit curve parameters (-param_enc explicit)
 - Compressed base point (-conv_form compressed)
 - Compressed public key (-conv_form compressed)
Input: Domain parameters in raw binary formats **Output:** Domain parameters in **BIGNUM** type

1:
$$p \leftarrow \mathsf{BN_bin2bn}(p_{\mathsf{bin}})$$

- 2: $A \leftarrow \mathsf{BN_bin2bn}(A_{\mathsf{bin}})$
- 3: $B \leftarrow \mathsf{BN_bin2bn}(B_{\mathsf{bin}})$
- 4: $x \leftarrow \mathsf{BN_bin2bn}(x_{\mathsf{bin}})$
- 5: $P \leftarrow \mathsf{Decomp}(\bar{P} = (x, \bar{y}), p, A, B)$
- 6: Validate $y^2 \stackrel{?}{=} x^3 + Ax + B$

7: return (p, A, B, P)

- **BIGNUM**: OpenSSL's data structure representing a multiprecision integer
- BN_bin2bn(): utility function which converts a raw byte array to a BIGNUM object

Input: Domain parameters in raw binary formats **Output:** Domain parameters in **BIGNUM** type

1:
$$p \leftarrow \mathsf{BN_bin2bn}(p_{\mathsf{bin}})$$

- 2: $A \leftarrow \mathsf{BN_bin2bn}(A_{\mathsf{bin}})$
- 3: $B \leftarrow \mathsf{BN_bin2bn}(B_{\mathsf{bin}})$
- 4: $x \leftarrow \mathsf{BN_bin2bn}(x_{\mathsf{bin}})$
- 5: $\tilde{P} \leftarrow \mathsf{Decomp}(\bar{P} = (x, \bar{y}), p, A, B)$ **/**SCPD fault
- 6: Validate $y^2 \stackrel{?}{=} x^3 + Ax + B \not\in$ SCPD fault
- 7: return (p, A, B, \widetilde{P})
 - **BIGNUM**: OpenSSL's data structure representing a multiprecision integer
 - BN_bin2bn(): utility function which converts a raw byte array to a BIGNUM object

Input: Domain parameters in raw binary formats **Output:** Domain parameters in **BIGNUM** type

1:
$$p \leftarrow \mathsf{BN_bin2bn}(p_{\mathsf{bin}})$$

- 2: $A \leftarrow \mathsf{BN_bin2bn}(A_{\mathsf{bin}})$
- 3: $0 \leftarrow \mathsf{BN_bin2bn}(B_{\mathsf{bin}})$ #Our fault

4:
$$x \leftarrow \mathsf{BN_bin2bn}(x_{\mathsf{bin}})$$

5:
$$\tilde{P} \leftarrow \mathsf{Decomp}(\bar{P} = (x, \bar{y}), p, A, \mathbf{0})$$

6: Validate
$$y^2 \stackrel{!}{=} x^3 + Ax + 0$$

7: return $(p, A, 0, \widetilde{P})$

- **BIGNUM**: OpenSSL's data structure representing a multiprecision integer
- BN_bin2bn(): utility function which converts a raw byte array to a BIGNUM object

Realization of Our Attack Model

 Actual fault attack targets a certain CPU instruction

Figure 10: Complete assembly code for BN_bin2bn() function, generated by GCC 6.3.0 in Raspberry Pi

			٦.
	.arch arm	vő	
2	.align	2	
3	.global	BN_bin2bn	
4	.syntax u	nified	
	.arn		
	.fpu vfp		
7	type	BN_bin2bn, %function	12
	BN bin2bn:		12
	8 args -	0. pretend = 0. frame = 0	12
10	8 frame n	eeded = 0, uses anonymous args = 0	12
	nuah	(r4, r5, r6, r7, r8, r9, r10, 1r)	1
	autra	Y8. F2. #0	Ľ
	1007	r4. r0	Ľ
	mov.	r6. r1	ľ
16	movine	110.40	Ľ
	her	1351	Ľ
	1330-		Ľ
18			ľ
	CTTD	F6. #0	1
	t ap		1
	Luish a	1 1-43	2
	LOLD L	-2 40	2
	bas		7
	2.00		7
2	1224	13, 14, 11	2
2	163341		2
-	8 94/8	10, 10, 11	2
0	NUV	19, 13	X
1	Lord	v2 [x2]	Р
1	2.010	2 2 2 41 8 CV101-	Р
	000	¥2 #0	
	hear	1.224	1
	1222.		1
~		x6 40	1
- 2	City Dire	1222 3 2210	
	1.333.	Carter Construction	ľ
12	BU207	-98	Ľ
18	mov.	F3. #0	Ľ
	97.7	P3. (P8. 44)	P
	1329-		1
	B.C.M.	-0 -9	1
	000	1r4, r5, r6, r2, r8, r9, r10, pc)	1
	1 2 2 5 .		15
	auto	15 16 41	ľ
	B GAZ		r
~	lar	v7 v5 42	1
-	add	-7 -7 41	17
	BOR .	e1 e7	L
~	b1	he wereard (RIT)	L
~	01	and an an	I.
30	and	ED, ED, #3	I.

	auba	19 10 10
	beg	19, 10, 40
	Ded	12352
	ROIT	23 23
	244	259 22 26 24 26
	and the	10, 14, 10
	45 Y	v7 (v8 44)
	00 X	v2 [v8 #12]
1 222.	301	11, [10, #11]
	1 date	-1 (-1) 41
	000	x5 #0
	anda	10, 10
	3442	-2 -1 -2 1-1 40
-	U.L.A.	1 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
_	Ded	Those Control
	Lasp.	
	101	10, 10
	U.L.	on_correct_coptenti
	10.7	17, 10
	10.7	104 -5 -5 -7 -0 -0 -10
1.22.0	pop	(14, 15, 16, 17, 16, 19, 110, pc)
.1.3361	1.de	-2 (-2)
	101	12, 1101
	50.0	Ely Ely ML
_	carp	14 FD
_	307	ES, [E2, E), ISL #2] # SALE 1
	BOT .	10, 10
	hee	1 222
		-0 -8
	nov bl	FU, FS
	DI	bh_correct_cop(PLI)
	mov	19, 18
	h-1	WM and WATE
	and a	-9 -0 40
	autra	-10, -10
	have	110, 10
	one	-0.50
	and a	1330
1.15.2.		16369
103321		-0 -10
	80V	EV, ELV
	10 A	1.330
		16367 200 b (- 2b - 2b) b (- 2b -
	.0126	BR_DINZON,BN_DINZON

Realization of Our Attack Model

- Actual fault attack targets a certain CPU instruction
- We identified 4
 possibly vulnerable
 instructions in
 BN_bin2bn()'s
 assembly code
 when compiled in
 Rasperry Pi

Figure 10: Complete assembly code for BN_bin2bn() function, generated by GCC 6.3.0 in Raspberry Pi

	auba	19 10 40
	hea	1 252
	nou	2 40
	BOIL	22 22
	add	257 LL 26 24 26
	and the second	20, 24, 20
	AT Y	v7 [v8 44]
	00 X	x2 [x8 #12]
	1drb	e1. (e4). 41
	010	15. 10
	aub	r5, r5, #1
	077	r3, r1, r3, 1x1 #8
-	beg	1338 8 001011
_	CED	14. 15
	bne	.1337
	mont.	r0. r8
	61	hp correct top(RLT)
	BOY	r9, r8
.1353:		
	nov	10. 19
	DOD	(r4, r5, r6, r7, r8, r9, r10, pc)
1.3381		
	ldr	r2, [r8]
	sub	27, 27, 41
	CHO	r4, r6
-	atr	r3, [r2, r7, 1s1 #2] # 5x1F[]
	nov	25, #3
	nov	r3, r0
	bne	.L337
	nov	r0, r8
	bl	bn_correct_top(PLT)
	nov	r9, r8
	ь	.L353
.1.351:		
	ы	BN_new (PLT)
	auba	r8, r0, #0
	novne	r10, r8
	bne	.L330
	nov	r9, r8
	ь	.L329
.L3521		
	nov	r0, r10
	ь1	BN_free(PLT)
	b	.L329
	.size	BN_bin2bn,BN_bin2bn

Realization of Our Attack Model

- Actual fault attack targets a certain CPU instruction
- We identified 4
 possibly vulnerable
 instructions in
 BN_bin2bn()'s
 assembly code
 when compiled in
 Rasperry Pi
- Quick experiment: comment out each target line → the function returned 0!

Figure 10: Complete assembly code for $BN_bin2bn()$ function, generated by GCC 6.3.0 in Raspberry Pi

	auba	19 10 10
	hea	1 252
	now	2 40
	ROLL	22 22
	add	vé vé vé
	and the second	20, 24, 20
	AT Y	v7 (v8 #4)
	00.0	27 [10] 44] 22 [10] 412]
	ser	22, [20, #12]
.13375		
	Idro	F1, [F4], #1
	cmp	25, 40
	aub	ED, ED, #1
-	OII	F3, F1, F3, 181 #8
-	peq	17320 6 SK1611
	cmp	F4, F0
	DUG	. 1.3.37
	nov	ro, rs
	DI	bn_correct_top(Pur)
	nov	r9, r8
.L353:		
	nov	r0, r9
	pop	(r4, r5, r6, r7, r8, r9, r10, pc)
.L338:		
	ldr	r2, [r8]
	sub	27, 27, #1
_	сжр	r4, r6
<	atr	r3, [r2, r7, 1s1 42] 0 5x1211-
	NOV	25, #3
	mov	23, 20
	bue	.1.337
	nov	r0, r8
	D1	bn_correct_top(PLT)
	nov	19, 18
	ь	.L353
.1.351:		
	ы	BN_new(PLT)
	auba	r8, r0, #0
	novne	r10, r8
	bne	.L330
	nov	r9, r8
	ь	.L329
.L352:		
	nov	r0, r10
	ь1	BN_free(PLT)
	b	.L329
	.size	BN_bin2bn,BN_bin2bn

Algorithm ECDSA signature generation [JMV01]

Input: *P*: base point of prime order *n*, $d \in \mathbb{Z}/n\mathbb{Z}$: secret key, Q = [d]P: public key, $M \in \{0,1\}^*$: message to be signed **Output:** a valid signature (r, s)

- 1: $k \leftarrow \mathbb{Z}/n\mathbb{Z}$
- 2: $(x_k, y_k) \leftarrow [k]P$
- 3: $r \leftarrow x_k \mod n$
- 4: $h \leftarrow H(M)$
- 5: $s \leftarrow k^{-1}(h + rd) \mod n$
- 6: **return** (*r*, *s*)

Algorithm ECDSA signature generation [JMV01]

Input: *P*: base point of prime order *n*, $d \in \mathbb{Z}/n\mathbb{Z}$: secret key, Q = [d]P: public key, $M \in \{0,1\}^*$: message to be signed **Output:** a valid signature (r, s)

- 1: $k \leftarrow \mathbb{Z}/n\mathbb{Z}$
- 2: $(\widetilde{x}_k, \widetilde{y}_k) \leftarrow [k]\widetilde{P}$
- 3: $\widetilde{r} \leftarrow \widetilde{x}_k \mod n$
- 4: $h \leftarrow H(M)$
- 5: $\widetilde{s} \leftarrow k^{-1}(h + \widetilde{r}d) \mod n$
- 6: return (\tilde{r}, \tilde{s})

Algorithm ECDSA signature generation [JMV01]

Input: *P*: base point of prime order *n*, $d \in \mathbb{Z}/n\mathbb{Z}$: secret key, Q = [d]P: public key, $M \in \{0, 1\}^*$: message to be signed **Output:** a valid signature (r, s)

1: $k \leftarrow s \mathbb{Z}/n\mathbb{Z}$ 2: $(\widetilde{x}_k, \widetilde{y}_k) \leftarrow [k]\widetilde{P}$ 3: $\widetilde{r} \leftarrow \widetilde{x}_k \mod n$ 4: $h \leftarrow H(M)$ 5: $\widetilde{s} \leftarrow k^{-1}(h + \widetilde{r}d) \mod n$ 6: return $(\widetilde{r}, \widetilde{s})$

Once k is obtained, the secret key d is directly exposed:

$$d = (\widetilde{s}k - h)/\widetilde{r} \mod n$$

Effect on SM2-ECIES (for OpenSSL ver. $\geq 1.1.1$)

Algorithm SM2-ECIES encryption [SL14]

Input: $Q \in E(\mathbb{F}_p)$: public key, $M \in \{0, 1\}^*$: plaintext Output: ciphertext (C_1, C_2, C_3)

- 1: $k \leftarrow \mathbb{Z}/n\mathbb{Z}$ 2: $C_1 = (x_k, y_k) \leftarrow [k]P$ 3: $(x', y') \leftarrow [k]Q$ 4: $K \leftarrow \mathsf{KDF}(x'||y', |M|)$ 5: $C_2 \leftarrow M \oplus K$ 6: $C_3 \leftarrow H(x'||y'||M)$ 7. return (C_1, C_2, C_3)
- 7: return (C_1, C_2, C_3)

Algorithm SM2-ECIES encryption [SL14]

Input: $Q \in E(\mathbb{F}_p)$: public key, $M \in \{0, 1\}^*$: plaintext Output: ciphertext (C_1, C_2, C_3)

- 1: $k \leftarrow s \mathbb{Z}/n\mathbb{Z}$ 2: $C_1 = (\widetilde{x}_k, \widetilde{y}_k) \leftarrow [k]\widetilde{P}$ 3: $(x', y') \leftarrow [k]\widetilde{Q}$ 4: $K \leftarrow \mathsf{KDF}(x'||y', |M|)$ 5: $C_2 \leftarrow M \oplus K$ 6: $C_3 \leftarrow H(x'||y'||M)$ 7: return (C_1, C_2, C_3)
- 7: return (C_1, C_2, C_3)

Algorithm SM2-ECIES encryption [SL14]

Input: $Q \in E(\mathbb{F}_p)$: public key, $M \in \{0, 1\}^*$: plaintext Output: ciphertext (C_1, C_2, C_3)

1: $k \leftarrow \mathbb{Z}/n\mathbb{Z}$ 2: $C_1 = (\tilde{x}_k, \tilde{y}_k) \leftarrow [k]\tilde{P}$ 3: $(x', y') \leftarrow [k]\tilde{Q}$ 4: $K \leftarrow \mathsf{KDF}(x'||y', |M|)$ 5: $C_2 \leftarrow M \oplus K$ 6: $C_3 \leftarrow H(x'||y'||M)$ 7: return (C_1, C_2, C_3)

• Once *K* is obtained, the plaintext can be recovered:

$$M = C_2 \oplus K.$$

- Target:
 - Raspberry Pi Model B
 - OpenSSL 1.1.1: latest release as of November 2018
 - ECDSA/SM2-ECIES over secp256k1

- Target:
 - Raspberry Pi Model B
 - OpenSSL 1.1.1: latest release as of November 2018
 - ECDSA/SM2-ECIES over secp256k1
- ChipWhisperer-Lite side-channel/fault analysis evaluation board

Experimental Setup (I)

Figure 1: ChipWhisperer-Lite evaluation board connected to Raspberry Pi Model B

Experimental Setup (II)

Figure 2: Overview of the experimental setup

Experimental Setup (III)

• Inserted a single voltage glitch

Experimental Setup (III)

- Inserted a single voltage glitch
- Found the suitable parameters causing reliably reproducible misbehavior of Raspberry Pi:
 - Enable-only glitches repeated 127 times
 - Offset 10 clock cycles

Success	No effect	Program crash	OS crash	Total
95	813	89	3	1000

- $\cdot \approx 10\%$ success rate
- Still serious enough since the adversary requires only one successful instance to recover the secret

Beyond OpenSSL

• secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations
- Turned out they do not use decompression technique for base points:

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations
- Turned out they do not use decompression technique for base points:
 - ✓ libsecp256k1

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations
- Turned out they do not use decompression technique for base points:
 - ✓ libsecp256k1
 - ✓ Trezor

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations
- Turned out they do not use decompression technique for base points:
 - ✓ libsecp256k1
 - ✓ Trezor
 - ✓ Ledger

- secp256k1 curve is nowadays a high-profile target owing to its use in Bitcoin protocol
- We investigated several major open-source bitcoin wallet implementations
- Turned out they do not use decompression technique for base points:
 - ✓ libsecp256k1
 - ✓ Trezor
 - ✓ Ledger
- More exhaustive evaluation will be required!
 - Some PoC implementation does use the compressed BP

Conclusion

• Brought the invalid curve attacks closer to practice with the help of low-cost single fault injection

- Brought the invalid curve attacks closer to practice with the help of low-cost single fault injection
- Demonstrated the attacks in a practical scenario
 - OpenSSL installed in Raspberry Pi

- Brought the invalid curve attacks closer to practice with the help of low-cost single fault injection
- Demonstrated the attacks in a practical scenario
 - OpenSSL installed in Raspberry Pi
- Lesson: Never apply point compression/decompression to base points!

Suggestion

- Suggestion
 - OpenSSL command line should deprecate -conv_form compressed option

Suggestion

- OpenSSL command line should deprecate -conv_form compressed option
- Notified to OpenSSL management committee

Suggestion

- OpenSSL command line should deprecate -conv_form compressed option
- Notified to OpenSSL management committee
- \cdot Future work

- Suggestion
 - OpenSSL command line should deprecate -conv_form compressed option
 - Notified to OpenSSL management committee
- Future work
 - Fault without physical access to the target?
 - Rowhammer.js
- Suggestion
 - OpenSSL command line should deprecate -conv_form compressed option
 - Notified to OpenSSL management committee
- Future work
 - Fault without physical access to the target?
 - Rowhammer.js
 - Investigate more cryptocurrency wallets/libraries

Tack!

https://ia.cr/2019/400

Questions?

References i

- Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, René Struik, and Scott A. Vanstone.
 Validation of Elliptic Curve Public Keys.
 In *PKC 2003*, volume 2567 of *LNCS*, pages 211–223. Springer, 2003.
- Johannes Blömer and Peter Günther. **Singular Curve Point Decompression Attack.** In *FDTC 2015*, pages 71–84. IEEE, 2015.
- 🔋 Freepik.
 - Icons made by Freepik from Flaticon.com is licensed by CC 3.0 BY.
 - http://www.flaticon.com.

References ii

- Don Johnson, Alfred Menezes, and Scott A. Vanstone.
 The Elliptic Curve Digital Signature Algorithm (ECDSA).
 International Journal of Information Security, 1(1):36–63, 2001.
- Sean Shen and XiaoDong Lee. SM2 Digital Signature Algorithm.
 - IETF, 2014. draft-shen-sm2-ecdsa-02.
- Standards for Efficient Cryptography Group (SECG).
 SEC 2: Recommended Elliptic Curve Domain Parameters, 2010.

Version 2.0.