
Degenerate Fault Attacks on Elliptic Curve
Parameters in OpenSSL
IACR ePrint: 2019/400

Akira Takahashi¹ Mehdi Tibouchi²
July 2, 2019
1Aarhus University, Denmark

2NTT Secure Platform Laboratories and Kyoto University, Japan

1

Outline

1. Introduction

2. Theory — Singular/Supersingular Curve Point
Decompression Attacks

3. Practice — Attacking ECDSA and ECIES in OpenSSL

4. Beyond OpenSSL

5. Conclusion

2

Introduction

Implementation Attacks against ECC

• Elliptic curve crypto is widely used in many devices

• We live in the era of IoT
• Threat of physical attacks on implementations of ECC

3

Implementation Attacks against ECC

• Elliptic curve crypto is widely used in many devices
• We live in the era of IoT

• Threat of physical attacks on implementations of ECC

3

Implementation Attacks against ECC

• Elliptic curve crypto is widely used in many devices
• We live in the era of IoT ≈ Insecurity of Things!

• Threat of physical attacks on implementations of ECC

3

Implementation Attacks against ECC

• Elliptic curve crypto is widely used in many devices
• We live in the era of IoT ≈ Insecurity of Things!
• Threat of physical attacks on implementations of ECC

3

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])

• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:

1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.

4

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])
• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:

1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.

4

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])
• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:

1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.

4

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])
• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:
1. Pick some point P̃ on a weak curve Ẽ

2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.

4

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])
• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:
1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm

3. Compute partial bits of the secret scalar k by examining an
invalid output [k]P̃.

4

Invalid Curve Attacks

• Correctness attack against ECC (Antipa et al. [ABM+03])
• Exploits careless implementations that do not check if the
input point satisfies the predefined curve equation

• Basic strategy of the adversary:
1. Pick some point P̃ on a weak curve Ẽ
2. Send P̃ to the scalar multiplication algorithm
3. Compute partial bits of the secret scalar k by examining an

invalid output [k]P̃.

4

Limitation of Invalid Curve Attacks

• Simple countermeasure: point validitation of the input
P = (x, y)

y2 ?
= x3 + Ax + B

• Are invalid curve attacks dead?

– NO!
• where there’s crypto, there’s a risk of fault attacks

5

Limitation of Invalid Curve Attacks

• Simple countermeasure: point validitation of the input
P = (x, y)

y2 ?
= x3 + Ax + B

• Are invalid curve attacks dead?

– NO!
• where there’s crypto, there’s a risk of fault attacks

5

Limitation of Invalid Curve Attacks

• Simple countermeasure: point validitation of the input
P = (x, y)

y2 ?
= x3 + Ax + B

• Are invalid curve attacks dead? – NO!

• where there’s crypto, there’s a risk of fault attacks

5

Limitation of Invalid Curve Attacks

• Simple countermeasure: point validitation of the input
P = (x, y)

y2 ?
= x3 + Ax + B

• Are invalid curve attacks dead? – NO!
• where there’s crypto, there’s a risk of fault attacks

5

Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6

Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6

Fault Attacks

• Active physical attacks
• cf. SCA is passive

• Tamper with the device
to cause malfunction

• Instruction skip
• Memory bit-flip

• Various methods:
• Voltage glitch
• Clock glitch
• Optical attacks
• Temperature attacks
• Optical attacks
• Magnetic attacks
• etc.

6

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES

• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman

• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES

• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman

• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES
• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman

• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES
• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman

• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES
• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman
• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Summary of the Results

We performed fault analyses on OpenSSL’s elliptic curve crypto
which does the point validation:

1. Attack on ECDSA and ECIES
• Single fault injection leads to the recovery of secret
key/plaintext with almost no computational cost

2. Attack on EC Diffie–Hellman
• Requires several faulty ciphertexts, but can recover server’s
secret key with practical computational cost

3. Experimentally verified that the attacks reliably work
against OpenSSL installed in Raspberry Pi!

7

Theory — Singular/Supersingular
Curve Point Decompression Attacks

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:

• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant
• Achievable with low-cost single fault injection

8

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:

• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant
• Achievable with low-cost single fault injection

8

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:

• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant
• Achievable with low-cost single fault injection

8

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:
• Applicable to almost all standardized curves

• Exploit supersingular curves for targets with non-zero
j-invariant

• Achievable with low-cost single fault injection

8

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:
• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant

• Achievable with low-cost single fault injection

8

SCPD Attacks Overview

• Originally described as an attack on pairing-based crypto
by Blömer and Günther (FDTC’15 [BG15])

• Variant of invalid curve attacks, making use of fault
injection

• We generalize & improve the SCPD attack:
• Applicable to almost all standardized curves
• Exploit supersingular curves for targets with non-zero

j-invariant
• Achievable with low-cost single fault injection

8

Singular Curve Point Decompression Attack

8

Singular Curve Point Decompression Attack

8

Point Compression/Decompression

• Consider a short Weierstrass form of an elliptic curve
defined over Fp:

E/Fp : y2 = x3 + Ax + B

• y-coordinate is determined by x up to sign:

y = +
√

x3 + Ax + B or −
√

x3 + Ax + B.

• Only the sign of y (i.e. whether y is even or odd in Fp)
needs to be stored

• Typically used to compress public keys, but sometimes
applied to base points too

9

Point Compression/Decompression

• Consider a short Weierstrass form of an elliptic curve
defined over Fp:

E/Fp : y2 = x3 + Ax + B

• y-coordinate is determined by x up to sign:

y = +
√

x3 + Ax + B or −
√

x3 + Ax + B.

• Only the sign of y (i.e. whether y is even or odd in Fp)
needs to be stored

• Typically used to compress public keys, but sometimes
applied to base points too

9

Point Compression/Decompression

• Consider a short Weierstrass form of an elliptic curve
defined over Fp:

E/Fp : y2 = x3 + Ax + B

• y-coordinate is determined by x up to sign:

y = +
√

x3 + Ax + B or −
√

x3 + Ax + B.

• Only the sign of y (i.e. whether y is even or odd in Fp)
needs to be stored

• Typically used to compress public keys, but sometimes
applied to base points too

9

Point Compression/Decompression

• Consider a short Weierstrass form of an elliptic curve
defined over Fp:

E/Fp : y2 = x3 + Ax + B

• y-coordinate is determined by x up to sign:

y = +
√

x3 + Ax + B or −
√

x3 + Ax + B.

• Only the sign of y (i.e. whether y is even or odd in Fp)
needs to be stored

• Typically used to compress public keys, but sometimes
applied to base points too

9

Example: secp256k1 Bitcoin curve

Uncompressed base point [Sta10, §2.4.1]

04 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798
483ADA77 26A3C465 5DA4FBFC 0E1108A8
FD17B448 A6855419 9C47D08F FB10D4B8

10

Example: secp256k1 Bitcoin curve

Compressed base point [Sta10, §2.4.1]

02 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798

11

Singular Curve Point Decompression Attack

11

Attack Model

1. Compressed base point is stored in a cryptographic device
2. Base point is decompressed before passed to scalar

multiplication algorithm
3. Adversary injects a fault

; Can skip a few instructions

12

Attack Model

1. Compressed base point is stored in a cryptographic device

2. Base point is decompressed before passed to scalar
multiplication algorithm

3. Adversary injects a fault

; Can skip a few instructions

12

Attack Model

1. Compressed base point is stored in a cryptographic device
2. Base point is decompressed before passed to scalar

multiplication algorithm

3. Adversary injects a fault

; Can skip a few instructions

12

Attack Model

1. Compressed base point is stored in a cryptographic device
2. Base point is decompressed before passed to scalar

multiplication algorithm
3. Adversary injects a fault

; Can skip a few instructions

12

Attack Model

1. Compressed base point is stored in a cryptographic device
2. Base point is decompressed before passed to scalar

multiplication algorithm
3. Adversary injects a fault ; Can skip a few instructions 12

Instruction Skipping Fault on Base Point Decompression (I)

Algorithm Point Decompression Algorithm
Input: x ∈ Fp, ȳ ∈ {0x02,0x03}, A, B, p
Output: P = (x, y): uncompressed curve point
1: y← x2

2: y← y + A ▷ A = 0 for secp k and BN curves
3: y← y× x
4: y← y + B

ESkip!

5: y← ±√y
6: Validate coordinates: y2 ?

= x3 + Ax + B

ESkip!

7: return (x, y)

13

Instruction Skipping Fault on Base Point Decompression (I)

Algorithm Point Decompression Algorithm
Input: x ∈ Fp, ȳ ∈ {0x02,0x03}, A, B, p
Output: P = (x, y): uncompressed curve point
1: y← x2

2: y← y + A ▷ A = 0 for secp k and BN curves
3: y← y× x
4: y← y + B ESkip!
5: y← ±√y
6: Validate coordinates: y2 ?

= x3 + Ax + B

ESkip!

7: return (x, y)

13

Instruction Skipping Fault on Base Point Decompression (I)

Algorithm Point Decompression Algorithm
Input: x ∈ Fp, ȳ ∈ {0x02,0x03}, A, B, p
Output: P = (x, y): uncompressed curve point
1: y← x2

2: y← y + A ▷ A = 0 for secp k and BN curves
3: y← y× x
4: y← y + B ESkip!
5: y← ±√y
6: Validate coordinates: y2 ?

= x3 + Ax + B ESkip!
7: return (x, y)

13

Instruction Skipping Fault on Base Point Decompression (II)

• y-coordinate is incorrectly reconstructed:

ỹ2 = x3 mod p.

• The perturbed faulty base point P̃ = (x, ỹ) is reliably on
singular curve Ẽ!

E
x

y

E : y2 = x3 + B

P

x

y

Ẽ : y2 = x3

P̃

14

Isomorphism between Singular Curve and Additive Group F+
p

Theorem
Let F+

p be the additive group of Fp and Ẽ(Fp) be the set of
nonsingular Fp-rational points on Ẽ including the point at
infinity O = (0 : 1 : 0). Then the map ϕ : Ẽ(Fp)→ F+

p with

(x, y) 7→ x/y
O 7→ 0,

is a group isomorphism between Ẽ(Fp) and F+
p .

15

Isomorphism between Singular Curve and Additive Group F+
p

Theorem
Let F+

p be the additive group of Fp and Ẽ(Fp) be the set of
nonsingular Fp-rational points on Ẽ including the point at
infinity O = (0 : 1 : 0). Then the map ϕ : Ẽ(Fp)→ F+

p with

(x, y) 7→ x/y
O 7→ 0,

is a group isomorphism between Ẽ(Fp) and F+
p .

15

How to Recover the Secret k

• Let [k]P̃ = (x̃k, ỹk) be a faulty output

• Then using the isomorphism ϕ in Theorem

x̃k/ỹk = ϕ([k]P̃) = ϕ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= ϕ(P̃) + . . .+ ϕ(P̃)
= kx/ỹ.

• Problem degenerates to DLP in F+
p (trivial!)

• k can be simply recovered by computing (ỹx̃k)/(xỹk) in Fp

16

How to Recover the Secret k

• Let [k]P̃ = (x̃k, ỹk) be a faulty output
• Then using the isomorphism ϕ in Theorem

x̃k/ỹk = ϕ([k]P̃) = ϕ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= ϕ(P̃) + . . .+ ϕ(P̃)
= kx/ỹ.

• Problem degenerates to DLP in F+
p (trivial!)

• k can be simply recovered by computing (ỹx̃k)/(xỹk) in Fp

16

How to Recover the Secret k

• Let [k]P̃ = (x̃k, ỹk) be a faulty output
• Then using the isomorphism ϕ in Theorem

x̃k/ỹk = ϕ([k]P̃) = ϕ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= ϕ(P̃) + . . .+ ϕ(P̃)
= kx/ỹ.

• Problem degenerates to DLP in F+
p (trivial!)

• k can be simply recovered by computing (ỹx̃k)/(xỹk) in Fp

16

How to Recover the Secret k

• Let [k]P̃ = (x̃k, ỹk) be a faulty output
• Then using the isomorphism ϕ in Theorem

x̃k/ỹk = ϕ([k]P̃) = ϕ(P̃ + . . .+ P̃︸ ︷︷ ︸
k

)

= ϕ(P̃) + . . .+ ϕ(P̃)
= kx/ỹ.

• Problem degenerates to DLP in F+
p (trivial!)

• k can be simply recovered by computing (ỹx̃k)/(xỹk) in Fp

16

What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!
• We can apply Menezes–Okamoto–Vanstone (MOV) attack!
• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .
• Tractable for most standardized parameters

17

What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!

• We can apply Menezes–Okamoto–Vanstone (MOV) attack!
• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .
• Tractable for most standardized parameters

17

What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!
• We can apply Menezes–Okamoto–Vanstone (MOV) attack!

• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .
• Tractable for most standardized parameters

17

What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!
• We can apply Menezes–Okamoto–Vanstone (MOV) attack!
• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .

• Tractable for most standardized parameters

17

What if A ̸= 0? (New observation)

Theorem (MOV attack)
Let E′ be a supersingular curve over Fp, p ≥ 5. Then there
exists an injective, efficiently computable group
homomorphism

en : E′(Fp)→ F∗
p2

which can be expressed in terms of the Weil pairing on E′.

• The curve
E′ : y2 = x3 + Ax

has #E′(Fp) = p + 1 and is supersingular if p ≡ 3 mod 4!
• We can apply Menezes–Okamoto–Vanstone (MOV) attack!
• The DLP on E′ is no harder than the DLP in the
multiplicative group F∗

p2 .
• Tractable for most standardized parameters 17

Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18

Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18

Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18

Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18

Practicality Issues

• Requires a double fault to skip the point validation
• Hard to realize
• Especially on larger embedded platforms with high
frequency chips and modern OSes

• Previous work targeted an AVR microcontroller running the
pairing-based BLS signature

• Not so widely used setting

Can SCPD attacks be more practical?

18

Practice — Attacking ECDSA and
ECIES in OpenSSL

OpenSSL EC Key Files

• OpenSSL’s ecparam command allows users to generate EC
key files with:

• Explicit curve parameters (-param_enc explicit)
• Compressed base point (-conv_form compressed)
• Compressed public key (-conv_form compressed)

19

OpenSSL EC Key Files

• OpenSSL’s ecparam command allows users to generate EC
key files with:

• Explicit curve parameters (-param_enc explicit)

• Compressed base point (-conv_form compressed)
• Compressed public key (-conv_form compressed)

19

OpenSSL EC Key Files

• OpenSSL’s ecparam command allows users to generate EC
key files with:

• Explicit curve parameters (-param_enc explicit)
• Compressed base point (-conv_form compressed)

• Compressed public key (-conv_form compressed)

19

OpenSSL EC Key Files

• OpenSSL’s ecparam command allows users to generate EC
key files with:

• Explicit curve parameters (-param_enc explicit)
• Compressed base point (-conv_form compressed)
• Compressed public key (-conv_form compressed)

19

How to Attack with a Single Fault

Input: Domain parameters in raw binary formats
Output: Domain parameters in BIGNUM type
1: p←BN_bin2bn(pbin)
2: A←BN_bin2bn(Abin)

3: B←BN_bin2bn(Bbin)

4: x←BN_bin2bn(xbin)
5: P← Decomp(P̄ = (x, ȳ), p,A,B)

6: Validate y2 ?
= x3 + Ax + B

7: return (p,A,B,P)

• BIGNUM: OpenSSL’s data structure representing a
multiprecision integer

• BN_bin2bn(): utility function which converts a raw byte
array to a BIGNUM object 20

How to Attack with a Single Fault

Input: Domain parameters in raw binary formats
Output: Domain parameters in BIGNUM type
1: p←BN_bin2bn(pbin)
2: A←BN_bin2bn(Abin)

3: B←BN_bin2bn(Bbin)

4: x←BN_bin2bn(xbin)
5: P̃← Decomp(P̄ = (x, ȳ), p,A,B) ESCPD fault
6: Validate y2 ?

= x3 + Ax + B ESCPD fault
7: return (p,A,B, P̃)

• BIGNUM: OpenSSL’s data structure representing a
multiprecision integer

• BN_bin2bn(): utility function which converts a raw byte
array to a BIGNUM object 20

How to Attack with a Single Fault

Input: Domain parameters in raw binary formats
Output: Domain parameters in BIGNUM type
1: p←BN_bin2bn(pbin)
2: A←BN_bin2bn(Abin)

3: 0←BN_bin2bn(Bbin) EOur fault
4: x←BN_bin2bn(xbin)
5: P̃← Decomp(P̄ = (x, ȳ), p,A, 0)
6: Validate y2 ?

= x3 + Ax + 0
7: return (p,A, 0, P̃)

• BIGNUM: OpenSSL’s data structure representing a
multiprecision integer

• BN_bin2bn(): utility function which converts a raw byte
array to a BIGNUM object 20

Realization of Our Attack Model

• Actual fault attack
targets a certain
CPU instruction

• We identified 4
possibly vulnerable
instructions in
BN_bin2bn()’s
assembly code
when compiled in
Rasperry Pi

• Quick experiment:
comment out each
target line ; the
function returned 0!

21

Realization of Our Attack Model

• Actual fault attack
targets a certain
CPU instruction

• We identified 4
possibly vulnerable
instructions in
BN_bin2bn()’s
assembly code
when compiled in
Rasperry Pi

• Quick experiment:
comment out each
target line ; the
function returned 0!

21

Realization of Our Attack Model

• Actual fault attack
targets a certain
CPU instruction

• We identified 4
possibly vulnerable
instructions in
BN_bin2bn()’s
assembly code
when compiled in
Rasperry Pi

• Quick experiment:
comment out each
target line ; the
function returned 0! 21

Effect on ECDSA

Algorithm ECDSA signature generation [JMV01]
Input: P: base point of prime order n, d ∈ Z/nZ: secret key,

Q = [d]P: public key, M ∈ {0, 1}∗: message to be signed
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (xk, yk)← [k]P
3: r← xk mod n
4: h← H(M)

5: s← k−1(h + rd) mod n
6: return (r, s)

22

Effect on ECDSA

Algorithm ECDSA signature generation [JMV01]
Input: P: base point of prime order n, d ∈ Z/nZ: secret key,

Q = [d]P: public key, M ∈ {0, 1}∗: message to be signed
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (x̃k, ỹk)← [k]P̃
3: r̃← x̃k mod n
4: h← H(M)

5: s̃← k−1(h + r̃d) mod n
6: return (̃r, s̃)

22

Effect on ECDSA

Algorithm ECDSA signature generation [JMV01]
Input: P: base point of prime order n, d ∈ Z/nZ: secret key,

Q = [d]P: public key, M ∈ {0, 1}∗: message to be signed
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (x̃k, ỹk)← [k]P̃
3: r̃← x̃k mod n
4: h← H(M)

5: s̃← k−1(h + r̃d) mod n
6: return (̃r, s̃)

Once k is obtained, the secret key d is directly exposed:

d = (̃sk− h)/r̃ mod n 22

Effect on SM2-ECIES (for OpenSSL ver. ≥ 1.1.1)

Algorithm SM2-ECIES encryption [SL14]
Input: Q ∈ E(Fp): public key, M ∈ {0, 1}∗: plaintext
Output: ciphertext (C1,C2,C3)

1: k←$Z/nZ
2: C1 = (xk, yk)← [k]P
3: (x′, y′)← [k]Q
4: K← KDF(x′||y′, |M|)
5: C2 ← M⊕K
6: C3 ← H(x′||y′||M)

7: return (C1,C2,C3)

• Once K is obtained, the plaintext can be recovered:

M = C2 ⊕K.

23

Effect on SM2-ECIES (for OpenSSL ver. ≥ 1.1.1)

Algorithm SM2-ECIES encryption [SL14]
Input: Q ∈ E(Fp): public key, M ∈ {0, 1}∗: plaintext
Output: ciphertext (C1,C2,C3)

1: k←$Z/nZ
2: C1 = (x̃k, ỹk)← [k]P̃
3: (x′, y′)← [k]Q̃
4: K← KDF(x′||y′, |M|)
5: C2 ← M⊕K
6: C3 ← H(x′||y′||M)

7: return (C1,C2,C3)

• Once K is obtained, the plaintext can be recovered:

M = C2 ⊕K.

23

Effect on SM2-ECIES (for OpenSSL ver. ≥ 1.1.1)

Algorithm SM2-ECIES encryption [SL14]
Input: Q ∈ E(Fp): public key, M ∈ {0, 1}∗: plaintext
Output: ciphertext (C1,C2,C3)

1: k←$Z/nZ
2: C1 = (x̃k, ỹk)← [k]P̃
3: (x′, y′)← [k]Q̃
4: K← KDF(x′||y′, |M|)
5: C2 ← M⊕K
6: C3 ← H(x′||y′||M)

7: return (C1,C2,C3)

• Once K is obtained, the plaintext can be recovered:

M = C2 ⊕K.
23

Practical Experiment

• Target:
• Raspberry Pi Model B
• OpenSSL 1.1.1: latest release as of November 2018
• ECDSA/SM2-ECIES over secp256k1

• ChipWhisperer-Lite side-channel/fault analysis evaluation
board

24

Practical Experiment

• Target:
• Raspberry Pi Model B
• OpenSSL 1.1.1: latest release as of November 2018
• ECDSA/SM2-ECIES over secp256k1

• ChipWhisperer-Lite side-channel/fault analysis evaluation
board

24

Experimental Setup (I)

Figure 1: ChipWhisperer-Lite evaluation board connected to
Raspberry Pi Model B

25

Experimental Setup (II)

Figure 2: Overview of the experimental setup 26

Experimental Setup (III)

• Inserted a single voltage glitch

• Found the suitable parameters causing reliably
reproducible misbehavior of Raspberry Pi:

• Enable-only glitches repeated 127 times
• Offset 10 clock cycles

27

Experimental Setup (III)

• Inserted a single voltage glitch
• Found the suitable parameters causing reliably
reproducible misbehavior of Raspberry Pi:

• Enable-only glitches repeated 127 times
• Offset 10 clock cycles

27

Experimental Result

Success No effect Program crash OS crash Total

95 813 89 3 1000

• ≈ 10% success rate
• Still serious enough since the adversary requires only one
successful instance to recover the secret

28

Beyond OpenSSL

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:

✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:

✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:

✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:
✓ libsecp256k1

✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:
✓ libsecp256k1
✓ Trezor

✓ Ledger
• More exhaustive evaluation will be required!

• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:
✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Bitcoin Wallets

• secp256k1 curve is nowadays a high-profile target owing to
its use in Bitcoin protocol

• We investigated several major open-source bitcoin wallet
implementations

• Turned out they do not use decompression technique for
base points:
✓ libsecp256k1
✓ Trezor
✓ Ledger

• More exhaustive evaluation will be required!
• Some PoC implementation does use the compressed BP

29

Conclusion

Conclusion

• Brought the invalid curve attacks closer to practice with
the help of low-cost single fault injection

• Demonstrated the attacks in a practical scenario
• OpenSSL installed in Raspberry Pi

• Lesson: Never apply point compression/decompression to
base points!

30

Conclusion

• Brought the invalid curve attacks closer to practice with
the help of low-cost single fault injection

• Demonstrated the attacks in a practical scenario
• OpenSSL installed in Raspberry Pi

• Lesson: Never apply point compression/decompression to
base points!

30

Conclusion

• Brought the invalid curve attacks closer to practice with
the help of low-cost single fault injection

• Demonstrated the attacks in a practical scenario
• OpenSSL installed in Raspberry Pi

• Lesson: Never apply point compression/decompression to
base points!

30

Countermeasure & Future Work

• Suggestion

• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Countermeasure & Future Work

• Suggestion
• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Countermeasure & Future Work

• Suggestion
• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee

• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Countermeasure & Future Work

• Suggestion
• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Countermeasure & Future Work

• Suggestion
• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Countermeasure & Future Work

• Suggestion
• OpenSSL command line should deprecate -conv_form
compressed option

• Notified to OpenSSL management committee
• Future work

• Fault without physical access to the target?
• Rowhammer.js

• Investigate more cryptocurrency wallets/libraries

31

Tack!

https://ia.cr/2019/400
[Fre]

Questions?

31

https://ia.cr/2019/400

References i

Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, René
Struik, and Scott A. Vanstone.
Validation of Elliptic Curve Public Keys.
In PKC 2003, volume 2567 of LNCS, pages 211–223. Springer,
2003.
Johannes Blömer and Peter Günther.
Singular Curve Point Decompression Attack.
In FDTC 2015, pages 71–84. IEEE, 2015.

Freepik.
Icons made by Freepik from Flaticon.com is licensed by CC
3.0 BY.
http://www.flaticon.com.

http://www.flaticon.com

References ii

Don Johnson, Alfred Menezes, and Scott A. Vanstone.
The Elliptic Curve Digital Signature Algorithm (ECDSA).
International Journal of Information Security, 1(1):36–63,
2001.
Sean Shen and XiaoDong Lee.
SM2 Digital Signature Algorithm.
IETF, 2014.
draft-shen-sm2-ecdsa-02.
Standards for Efficient Cryptography Group (SECG).
SEC 2: Recommended Elliptic Curve Domain Parameters,
2010.
Version 2.0.

	Introduction
	Theory — Singular/Supersingular Curve Point Decompression Attacks
	Point Compression/Decompression
	Attack

	Practice — Attacking ECDSA and ECIES in OpenSSL
	Beyond OpenSSL
	Conclusion
	Appendix

