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Signature from Identification: Fiat-Shamir Transform



Security Notion for Digital Signatures







Canonical Example: Schnorr Identification
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Randomness Failure in the Real World

• Poorly designed/implemented RNGs

• Predictable seed (srand(time(0))

• Side-channel attacks:
2018 CacheQuote on SGX EPID;
PortSmash on SMT/Hyper-Threading;
ROHNP

2019 TPM-FAIL; Minerva; biased wolfSSL
DSA

2020 Dé jà Vu attack on Mozilla’s NSS;
Raccoon attack on TLS 1.2

BBC news. 2011. https://www.bbc.com/
news/technology-12116051

https://www.bbc.com/news/technology-12116051
https://www.bbc.com/news/technology-12116051
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How to Solve HNP

Less bias/leakage 
& 

More signatures

Lattice

Fourier Transform

More bias/leakage
& 

Fewer signatures

• Q. Can we reduce the number of signatures for the Fourier transform attack?
• Q. Can we attack even less than 1-bit of leakage per signature?

• Attacker only learns correct MSB(r) with prob. < 1
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Lattice

Fourier Transform

Large dimension 
for small bias !

Large data 
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Bleichenbacher’s Method: Quantifying Bias Using DFT
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Bq(K) :=
1

N

N∑
i=1

e2πiri/q.



Bleichenbacher’s Method: Quantifying Bias Using DFT

Re

ImUniform ri ∈ [0, q)

Re

Im

Biased ri ∈ [0, q/2)

Definition
The sampled bias of points K = (ri)i∈{1,...,N} in Zq is defined by

Bq(K) :=
1

N

N∑
i=1

e2πiri/q.



Bleichenbacher’s Method: Quantifying Bias Using DFT

Re

ImUniform ri ∈ [0, q)

Re

Im

Biased ri ∈ [0, q/2)

Definition
The sampled bias of points K = (ri)i∈{1,...,N} in Zq is defined by

Bq(K) :=
1

N

N∑
i=1

e2πiri/q.



Bleichenbacher’s Method: Quantifying Bias Using DFT

Re

ImUniform ri ∈ [0, q)

Re

ImBiased ri ∈ [0, q/2)

Definition
The sampled bias of points K = (ri)i∈{1,...,N} in Zq is defined by

Bq(K) :=
1

N

N∑
i=1

e2πiri/q.



Bleichenbacher’s Method: Quantifying Bias Using DFT

Re

ImUniform ri ∈ [0, q)

Re

ImBiased ri ∈ [0, q/2)

Definition
The sampled bias of points K = (ri)i∈{1,...,N} in Zq is defined by

Bq(K) :=
1

N

N∑
i=1

e2πiri/q.



Stretching the Peak Width
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(b) c′i ≪ q

• w: “guessed” secret key sk

• Naive way: find w that maximizes |Bq((ri = zi − ci · w mod q)Ni=1)|

• Crucial: construct (c′i)N
′

i=1 by taking small and sparse linear combinations of (ci)Ni=1
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Experimental Records: Key Recovery Attack on ECDSA

Target Bias Facility Error rate Input Thread Time RAM Recovered
(GBP) (GBP) (GBP) MSBs

NIST P-192 1-bit AWS EC2 0 229 2304 113h 492GB 39
NIST P-192 1-bit AWS EC2 1% 235 2304 52h 492GB 39
sect163r1 1-bit Cluster 0 223 256 7h 80GB 36
sect163r1 1-bit Workstation 2.7% 224 48 42h 250GB 35

sect163r1 2-bit Workstation 0 1024 16 2h 96GB 32

Table 1: Computational results for the first round of Bleichenbacher

• Attack on P-192 is made possible by our highly optimized parallel
implementation.

• Attack on sect163r1 requires much less signatures
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Takeaways

• Improved analysis of Blechenbacher’s attack to recover ECDSA/Schnorr
secret keys

• Application: LadderLeak
• Tiny timing leakage from the Montgomery ladder scalar multiplication in
OpenSSL 1.0.2u and 1.1.0l

• Coordinated disclosure: fixed in April 2020

• Interesting connection between the HNP and GBP

Subsequent Works & Future Directions

• [AH21] Feasibility of lattice attack against 1-bit leakage
• Further improvements to the data complexity?
• Other sources of small leakage?
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Popular Solution: Deterministic Randomness Generation

1. Randomized signature : ��������
r ← RNG(·) / Risk of randomness bias!

2. Deterministic signature : r := H(sk,m)

• Hash each message keyed with sk.

• Widely implemented, e.g. in EdDSA, ECDSA, Dilithium, etc.

• However, another practical issue arises…



Fault Attack Vulnerability of Deterministic Randomness
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Better Countermeasure? – Randomness Hedging

1. Randomized signature : ��������
r ← RNG(·) / Risk of randomness bias!

2. Deterministic signature : (((((((((
r := H(sk,m) / Vulnerable to fault attacks!

3. Hedged signature : r := H(sk,m,nonce) , Seems secure?

• nonce: Number only used once

• nonce can be derived from low-quality RNG or counter

• r doesn’t repeat on the same m.

• Seems secure, but no formal analysis so far.

Q. To what extent are hedged FS signatures secure against fault attacks?
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Our Results (in the Random Oracle Model)
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3 Secure against single-bit flip/stuck-at faults.
7 Insecure against single-bit flip/stuck-at faults.
⋆ Security only holds for signatures from subset-revealing ID (e.g. Picnic).
▲ Security only holds for signatures from input-delayed ID (e.g. XEdDSA).



Takeaways

• Formal attacker model and security notions to capture the corrupted nonces
and bit-tampering faults

• Hedged FS signatures are provably more resilient than the randomized /
deterministic FS

• Application
• XEdDSA: Hedged variant of EdDSA used in Signal
• Picnic: NIST PQC competition candidate

Concurrent/Subsequent Works & Future Directions

• [FG20] Multi-bit/position bit-flip faults
• [GHHM21] Lifted our result to the QROM
• Lattice signatures from FS with aborts?
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Landscape of Multi-Party Fiat-Shamir Signing

# Round Method Schnorr Lattice

3 Commit&Open BN06, MuSig,GJKR07,KMOS21,GKMN21,Lin22 ES16,FH20,BK20,DOTT-DS3
2 TD-Hom-Com mBCJ, HBMS, MuSig-DN DOTT-MS, DOTT-DS2

1 (Off) + 1 (On) Linear Combination MuSig2, DWMS, FROST MuSig-L

• Orange: Multi-signature

• Green: Threshold signature (ours are only (n, n)-threshold)

• Fiat-Shamir with aborts (Lyubashevsky ’09/’12) ≈ Lattice-based Schnorr

Q. Can we construct two-round, provably secure schemes from lattices?
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Schnorr vs Fiat-Shamir with Aborts
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Bare-Bones Two-Party Schnorr



Bare-Bones Two-Party Signing from Lattices



Issues of Bare-Bones Protocols

1. Malicious Signer2 can choose u2 depending u1

• Forgery attack in the concurrent setting (Drijvers et al.’19)

2. Simulation of rejected (ui, c,⊥)
• Underlying ID scheme is only HVZK for non-aborting transcripts



Our Solution



Takeaways

• Two-round multi-party signing from lattices
• n-out-of-n threshold signature
• Multi-signature

• Proof in the (classical) ROM from the standard SIS and LWE assumptions

• Subtlety of lifting DLog schemes to the lattice world

Subsequent Works & Future Directions

• MuSig-L [BTT22] Single-round online phase
• Efficient implementation
• Proof in the QROM
• t-of-n signature from lattices
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Verifiable Encryption



Zero Knowledge



Validity



Landscape of VE Constructions

Generality of f Ciphertext Assumption

Camenisch–Shoup [CS03] DL in F∗ or Z∗
n Paillier DCR

MuSig-DN [NRSW20] DL Elgamal DDH
Lyubashevsky–Neven [LN17] Linear relation LPR SIS/LWE
SAVER [LCKO19] Any w/ SNARK Elgamal q-KEA
Beullens et al. [BDK+21] Membership in ring Elgamal-like DCSIDH
Camenisch–Damgård [CD00] Any w/ Σ-protocol of 1-bit Ch. PKE + Transcript Undeniable IND-CPA PKE
Our result [TZ22] Any w/ MPCitH ZKP PKE + Transcript Undeniable IND-CPA PKE

• Generality of relation f

• Flexibility in the receiver’s PKE

• Minimizing assumptions

Q. Can we construct generic VE supporting many f and PKE?
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Zero-knowledge Proof using MPC-in-the-head [IKOS07, GMO16]
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Observation



Our Compiler for Verifiable Encryption: High-level Idea
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Security

• Zero knowledge: Follows from IND-CPA of Encpk()

• Validity: Follows from undeniability of Encpk()
• Parallel repetitions to achieve negligible validity error



Interesting Corollaries

IKOS

• Verifiably encrypt witness for any NP relation

ZKBoo, KKW, Limbo

• Practical proofs for any circuit
• Encrypt Picnic private keys, hash function preimage, etc.

Banquet

• “I encrypted K such that ct = AESK(pt)” for public (ct,pt)
• Banquet + PQ-PKE ∈ {Kyber, FrodoKEM, . . .} = Post-Quantum VE

Distributed Key Generation in the Head (new)

• “I encrypted w such that x = gw” for public x
• Idea Prover runs simple, passively secure DKG: x :=

∏
i g

wi



Takeaways

• Versatile VE for a large class of relations and PKE

• Performance is okay if efficient MPCitH exists for f(x,w) ?
= 1

• No proof-of-plaintext-knowledge
• Possible improvements similar to improvements to MPCitH signatures

• Two concrete instantiations:
1. DLog private keys

2. AES private keys

Future Directions

• More efficient instantiation with constant-size ciphertexts?
• Connection with online-extractable ZK and commit-and-prove ZK?
• Compiling other IOPs into VE?
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