
Master’s Thesis

A Study on Attacks against Nonces in
Schnorr-like Signatures

Supervisors: Masayuki Abe & Mehdi Tibouchi

Department of Social Informatics
Graduate School of Informatics

Kyoto University

Japan

Akira Takahashi

Submitted on July 30, 2018

A Study on Attacks against Nonces in
Schnorr-like Signatures

Akira Takahashi

Abstract
As cryptography these days is increasingly closely tied to not only personal comput-
ers, but also to all other devices around us that hold sensitive information, it is es-
sential to actively analyze the security of cryptographic schemes deployed in real life
settings. This Master’s dissertation investigates the (in)security of real-world imple-
mentations of Schnorr-like signatures, one of the most widely-used class of digital
signature schemes, which includes in particular the standardized Digital Signature
Algorithm (DSA). Signature generation in these schemes uses random values known
as nonces. It is well known that nonces should be sampled uniformly in a certain
interval and should never be revealed; if the actual distribution of nonces deviates
from the uniform distribution or nonces are partially exposed, there exist attacks on
these schemes that can, in the worst case, yield to the recovery of the entire secret
signing key, and hence fully compromise the security of the signature scheme. Prac-
tically speaking, this can result in document forgery, identity fraud, the theft of digital
assets and other devastating consequences. It is thus of great importance to further
analyze the possible attacks against nonces and their countermeasures.

The thesis consists of twomain contributions to the study of attacks against nonces
in Schnorr-like signatures schemes which, when combined together, lead to a full
key recovery attack on a recent, high-profile signature scheme designed for high ef-
ficiency on embedded cryptographic devices.

As the first contribution, we optimize Bleichenbacher’s statistical attack tech-
nique against Schnorr-like signature schemes with biased or partially exposed nonces.
Previous approaches to Bleichenbacher’s attack suffered from very large memory
consumption during the so-called “range reduction” phase. Using a carefully ana-
lyzed and highly parallelizable approach to this range reduction based on the Schroeppel–
Shamir algorithm for knapsacks, we manage to overcome the memory barrier of pre-
vious work while maintaining a practical level of efficiency in terms of time com-
plexity.

As a separate contribution, we present new fault attacks against the specific Schnorr-
like scheme of Renes and Smith (ASIACRYPT 2017), called quotient Digital Signa-
ture (qDSA), when instantiated over the Curve25519 Montgomery curve, and we

validate some of them on the AVR microcontroller implementation of qDSA using
actual fault experiments on the ChipWhisperer-Lite evaluation board. These fault at-
tacks enable an adversary to generate signatures with 2 or 3 bits of the nonces known.

Combining our two contributions, we are able to achieve a full secret key recovery
on qDSA by applying our version of Bleichenbacher’s attack to these faulty signa-
tures. Using a hybrid parallelization model relying on both shared and distributed
memory, we achieve a very efficient implementation of our highly scalable range re-
duction algorithm. This allows us to complete Bleichenbacher’s attack in the 252-bit
prime order subgroup of Curve25519 within a reasonable time frame and using rela-
tivelymodest computational resources both for 3-bit nonce exposure and for themuch
harder case of 2-bit nonce exposure. Both of these computations, and particularly the
latter, set new records in the implementation of Bleichenbacher’s attack.

A Study on Attacks against Nonces in
Schnorr-like Signatures

Akira Takahashi

Abstract

今⽇暗号技術はパーソナルコンピュータだけでなく,⾝の回りのあらゆるデ
ジタルデバイスと密接に関わっているという背景から,現実世界のデバイス
上で実際に動作している暗号⽅式の安全性を評価することは重要さを増し
ている. 本修⼠論⽂では,国際標準にも採⽤された Digital Signature Algorithm
(DSA)を含み,今⽇最も広範に⽤いられているデジタル署名⽅式のクラスで
ある Schnorr型署名⽅式に着⽬し,その実装の（⾮）安全性を解析する. これ
らの⽅式の署名⽣成アルゴリズムにおいてはノンス（nonce）と呼ばれる⼀
時乱数が使⽤されている. このノンスは特定区間における⼀様分布に従うよ
うにサンプリングされねばならず,また部分的なビット列であっても署名⽣
成者以外に公開されてはならない. さもなくば,最悪の場合,悪意のある攻撃
者が Schnorr型署名の秘密鍵を完全に復元し,署名⽅式の安全性を侵害する
ことが可能となってしまうことが知られている. 実際上このような攻撃が可
能となれば,⽂書の偽造,⾝元の偽装,デジタル資源の盗難やその他の深刻な
影響をもたらしうるため,ノンスに対する攻撃とその対策についてさらに研
究することが肝要である.
本論⽂は Schnorr型署名のノンスに対する攻撃に関連した⼆つの主な貢

献から構成される. これらの貢献を組み合わせることで,組み込みデバイス
上で⾼効率に動作する署名⽅式として近年提案された署名⽅式に対する秘
密鍵復元攻撃が可能となる.
第⼀の貢献は,ノンスの偏り,またはノンスの⼀部ビットの漏洩を利⽤し

た Bleichenbacherによる統計的攻撃体系の最適化である. Bleichenbacher攻
撃実現のための従来のアプローチにおいては,「範囲削減（range reduction）」
と呼ばれる処理の空間計算量が膨⼤であったため,署名⽅式が今⽇の⼀般的
なセキュリティ強度を満たすパラメータを⽤いている場合は,偏りの⼩さい
ノンスから⽣成された署名に対する秘密鍵復元攻撃は主にメモリ消費量の
観点から,現実的に困難とされてきた. そこで本研究では元来ナップザック
問題に対する解法として知られていた Schroeppel–Shamirアルゴリズムをベ
ースに,空間計算量が抑えられかつ⾼度に並列化が可能な範囲削減アルゴリ
ズムを設計し,解析を⾏った. 提案アルゴリズムを⽤いることで,現実的な時

間計算量を維持しつつも,従来⼿法と⽐較して⼤幅に低いメモリ消費量を達
成することに成功した.
第⼆の貢献として, ASIACRYPT 2017において Renesと Smithによって提

案された quotient Digital Signature Algorithm (qDSA)と呼ばれる Schnorr型署
名に対する⼆つの新しいフォールト攻撃⼿法を⽰す. これらのフォールト攻
撃は,著名なMontgomery型楕円曲線パラメータである Curve25519上でイン
スタンス化された qDSAに対して適⽤可能であり,⼀⽅の攻撃⼿法に関して
は, ChipWhisperer-Lite評価ボードを⽤い, qDSAの AVRマイクロコントロー
ラ実装に対して攻撃実験を⾏うことで,現実的に攻撃が実⾏可能であること
を確認した. これらのフォールト攻撃により,攻撃者はノンスにおける 3-bit
または 2-bitの部分的漏洩情報を得ながら署名を⽣成することが可能となる.
以上の結果を組み合わせ,第⼀の貢献で改良した Bleichenbacher攻撃を,

第⼆の貢献で提案したフォールト攻撃により得られた不正な署名に適⽤す
ることで, qDSAに対する完全な秘密鍵復元攻撃を実現した. 本研究では,共
有・分散メモリ双⽅を活⽤したハイブリッド並列計算モデルを⽤いること
で, ⾮常に効率的でスケーラブルな範囲削減アルゴリズムの実装を提⽰す
る. この実装により, Curve25519の 252-bit素数位数部分群において,ノンス
の 3-bit漏洩・2-bit漏洩両⽅の場合に対して, Bleichenbacher攻撃を現実的な
計算時間と適度な計算資源の範疇で完了させることが可能であった. ⼆つの
計算結果において特に後者は従来⼿法では攻撃が困難とされていたパラメ
ータ設定であり,本研究では Bleichenbacher攻撃の実装における新しい記録
を打ち⽴てることとなった.

Acknowledgements

Foremost, I would like to expressmy sincere gratitude tomy supervisors Prof.Masayuki
Abe and Prof. Mehdi Tibouchi for the continuous support throughout my Masters
studies. I am indebted to my former supervisor Prof. Tatsuaki Okamoto for intro-
ducing me to the world of modern cryptology. I also thank my academic advisors
Prof. Shigeo Matsubara and Prof. Tsuyoshi Takagi for valuable comments on my re-
search. I am grateful to my thesis examiners Prof. Toru Ishida and Prof. Yasuo Okabe
for giving me helpful feedback. Finally, I would like to thank NTT Secure Platform
Laboratories for giving me a chance to work as an intern in such a great environment.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Scope of this work . 2
1.3 Attacks on Nonces in Schnorr-like Signatures 3
1.4 Montgomery Curve, Curve25519, qDSA 4
1.5 Contributions . 5
1.6 Related Work . 6

2 Preliminaries 8
2.1 Notations . 8
2.2 The quotient Digital Signature Algorithm 8
2.3 Knapsack Problem . 11

3 Fault Attacks on qDSA 12
3.1 Random Semi-Permanent Fault on the Base Point 14
3.2 Instruction Skipping Fault on Base Point Initialization 17
3.3 Preprocessing Signatures for Bleichenbacher’s Attack 23
3.4 Possible Countermeasures . 24

4 Bleichenbacher’s Nonce Attack 25
4.1 Bias Definition and Properties . 25
4.2 Range Reduction . 27
4.3 Bias Computation . 31
4.4 Recovering Remaining Bits . 31

5 Optimization and Parallelization of Bleichenbacher’s Attack 33
5.1 Our Approach: Using Schroeppel–Shamir Algorithm 33
5.2 Analysis . 34
5.3 Parallelization . 42
5.4 Lower Bounds for the Amount of Signatures 43
5.5 Data-(Time, Space) Trade-off . 44

5.6 Performance Comparison . 45

6 Implementation Results 47
6.1 Attack against 2-bit Bias . 49
6.2 Attack against 3-bit Bias . 50

7 Concluding Remarks 53

Bibliography 55

A Schnorr-like Signature Schemes 61
A.1 Schnorr Signature . 62
A.2 Digital Signature Algorithm . 63

B Subroutine of Algorithm 3 64

C Complete Performance Estimates 66

D Historical Records of Bleichenbacher’s Attack 69

Chapter 1

Introduction

1.1 Background
Cryptography in the wild. As we become more dependent on digital devices,
cyber-security and one of its most important foundations, cryptography, are of greater
interest than ever. Since the concept of public key cryptography was first introduced
by Diffie and Hellman [DH76] in 1976, a variety of cryptographic techniques that en-
sure the confidentiality and integrity of data have been developed. A good example
of how cryptography is present in our everyday life is the smart card; whenever we
pay by using a smart card, a series of cryptographic operations specified in the EMV
standard [EMV11], such as cryptographic hashing, public key encryption and digital
signatures, is performed even though we may not realize it. With the impending era
of the Internet of Things (IoT), cryptographic schemes are being deployed in various
types of devices, such as sensors and household electronic appliances; in fact, IoT de-
vices will soon be expected to carry all kinds of private data, including information
relevant to one’s health, habits and lifestyle, which should be handled with care. As
cryptography these days is increasingly closely tied not only to personal computers,
but also to all other devices around us that hold sensitive information, it is essential
to actively research and develop new cryptographic schemes that remain secure even
when deployed in real life conditions.

Threat of physical attacks. One of the major achievements of modern cryptogra-
phy has been to give formal, mathematically precise definitions for the security of
cryptographic primitives, such as the semantic security of public key encryption and
the unforgeability of digital signatures. Moreover, most of the cryptographic schemes
introduced in the last 10 to 20 years have been proved to satisfy these security notions
under well-defined computational hardness assumptions, like the hardness of integer
factorization or of computing discrete logarithms. However, these security notions

1

are typically not sufficient to guarantee that actual implementations of those schemes
are secure in practice, because they do not necessarily capture the full power of real-
world adversaries. In reality, we have to take into account the existence of physical
attacks against the devices that execute cryptographic algorithms. Physical attacks
are very powerful tools that allow adversaries to deviate from traditional security
models and ultimately bypass computationally hard problems.

One can roughly classify physical attacks into two types. The first one, side-
channel analysis, consists of passive attacks that attempt to recover secret information
from the physical leakage of cryptographic computations, such as the time it takes to
carry out certain operations, or the power consumption of the device as the compu-
tation is performed. The second one, fault analysis, consists of even stronger, active
attacks that seek to learn secrets by deliberately tampering with the device to cause
malfunction or otherwise unexpected behavior, bymodifying the voltage of the power
source at carefully chosen points in time, subjecting the device to sudden changes of
temperature, etc. [BCN+06]. These types of attacks have been experimentally shown
to be feasible in realistic settings, and do, in fact, affect the security of numerous cryp-
tographic primitives and protocols in the real world. As the advent of IoT is likely
to make this threat even more pressing, evaluating the power of physical attacks and
proposing appropriate countermeasures before deploying new cryptographic schemes
is crucial in preventing sensitive information from getting into the wrong hands.

1.2 Scope of this work
In the context stated above, the scope of the present work is the security analysis of im-
plementations of digital signature schemes, which are one of the most important and
well-studied primitives in cryptography. Specifically, we investigate the (in)security
of real-world implementations of Schnorr-like signatures [Sch91], one of the most
widely-used class of digital signature schemes, which includes in particular the stan-
dardized Digital Signature Algorithm (DSA) [Gal13]. Here we define “Schnorr-like
signatures” as signatures schemes whose signature generation algorithm provides a
publicly available pair (h, s) satisfying the following congruence relation:

k ≡ s+ hd mod n

where n is a known prime modulus, d ∈ Z/nZ is a secret signing key and k ∈ Z/nZ
is a random value known as nonce. For example, Schnorr signature [Sch91] and
DSA [Gal13] are the most typical Schnorr-like schemes (see Appendix A).

This thesis essentially focuses on the sensitivity of the nonce k in Schnorr-like
signatures. It is well known that nonces k should be sampled uniformly in a certain
interval and should never be revealed; if the actual distribution of nonces deviates
from the uniform distribution or nonces are partially exposed, there exist attacks on

2

these schemes that can, in the worst case, yield to the recovery of the entire secret
signing key, and hence fully compromise the security of the signature scheme. Prac-
tically speaking, this can result in document forgery identity fraud, the theft of digital
assets and other devastating consequences. It is thus of great importance to further
analyze the possible attacks against nonces and their countermeasures.

Before delving into details of the contributions we briefly survey and discuss
the state-of-the-art attacks against nonces. We also provide context for the specific
Schnorr-like signature scheme targeted in the second contribution of this research:
the quotient Digital Signature Algorithm (qDSA).

1.3 Attacks on Nonces in Schnorr-like Signatures
Attacks on the nonces of (EC)DSA [Gal13] and other Schnorr-like signature schemes
[Sch91] have been of interest to cryptanalysts over the last couple of decades. Since
the knowledge of the nonces directly translates to the secret key, it is well known that
the nonces should never be revealed or repeated. However, the nonces in Schnorr-
like signatures are even more sensitive; in fact, it is possible to recover the secret key
using only partial information of nonces. Perhaps the most famous example is the
lattice attack initiated by Howgrave-Graham and Smart in [HGS01]. In a nutshell,
the idea of lattice attacks is as follows: given d Schnorr-like signatures of different
messages with some least significant bits (LSB) of the nonces exposed, preprocess
signature pairs to make the nonces biased in their the most significant bits (MSB)
and construct a (d + 1)-dimension lattice L containing a hidden vector c depend-
ing on the secret key. The signatures themselves provide another vector v ∈ Zd+1

which is very close to c; under suitable conditions, c is highly likely to be the clos-
est vector to v in L. As a result, if the dimension d + 1 is small enough to make
the closest vector problem in L tractable, it is possible to compute c and hence the
secret key. See, e.g., [NT12] for more comprehensive description. The lattice at-
tack is a very powerful technique because it requires relatively few signatures as in-
put and works very efficiently in practice if many bits of the nonces are exposed.
Since its first introduction, there have been a number of works on the lattice attack,
such as [NS02, NS03, NNTW05, BvdPSY14, BFMT16]. The largest group size and
the smallest nonce exposure broken by lattice attacks in published literature so far
have been 160-bit DSA signatures with 2-bit nonce exposure, broken by Liu and
Nguyen [LN13], and 256-bit SM2 signatures with 3-bit nonce exposure, attacked by
Liu, Chen and Li [LCL13]. However, if the number of exposed bits and the resulting
bias is small, the lattice attacks are generally impractical due to the large lattice di-
mension, or because the hidden vector c does not necessarily coincide with the closest
vector.

Prior to lattice attacks, Bleichenbacher presented a purely statistical attack tech-

3

nique against biased nonces at the IEEE P1363 meeting in 2000 [Ble00]. This ap-
proach had never been formally published until a few years ago, when it was revisited
in a few papers [DMHMP14, AFG+14]. The main idea of Bleichenbacher’s attack
is to define a “bias function” based on a Fourier notion of bias, and to search for a
candidate value of the secret key corresponding to the peak of this bias function. An
advantage of Bleichenbacher’s attack over lattice attacks is that it can in principle
deal with arbitrarily small biases and even work with non-uniformly biased inputs.
On the negative side, Bleichenbacher’s method requires many signatures as input, and
therefore suffers from a large space complexity due to its “range reduction” phase,
where one has to find sufficiently many small and sparse linear combinations of sig-
nature values before computing the bias peak. For example, [AFG+14] took a very
straightforward approach to range reduction, which they call sort-and-difference, and
successfully carried out a full key recovery of ECDSA over 160-bit curve using 1-bit
bias. However, their approach needed 233 signatures as input and consumed 1TB of
memory, which remains an unusually large memory requirement for academic crypt-
analytic experiments even to this day. Hence, Bleichenbacher’s attack against groups
of large order and small biases (e.g., 256-bit curve and 2-bit bias) has appeared in-
tractable.

1.4 Montgomery Curve, Curve25519, qDSA
Elliptic curve cryptography is widely deployed nowadays since it offers relatively
short key length to achieve a good security level. The most commonly-known in-
stance is a signature scheme such as ECDSA. Most elliptic curve-based signature
schemes operate in the group of rational points of an elliptic curve defined over a
finite field, and their security relies on the hardness of the elliptic curve discrete log-
arithm problem (ECDLP). Moreover, elliptic curves are used to achieve efficient key
exchange protocols; for example, X25519 is specified in RFC7748 [LHT16] as a
function that computes the scalar multiplication efficiently in the elliptic curve-based
Diffie-Hellman key exchange (ECDHKE) [DH76]. The underlying curve used for
X25519 is called Curve25519 [Ber06], which is one of the most famous instances
of a Montgomery curve [Mon87]. Interestingly, Montgomery curves offer extremely
fast scalar multiplication due to its x-only arithmetic; however, it is not endowed with
a group law in the usual sense, which is typically required in curve-based signature
schemes. As a result, fast implementations of signature schemes using Curve25519
have usually avoided the x-only arithmetic, and relied on the twisted Edwards form
of that curve instead (which has a fast group law in the usual sense, but does not ben-
efit from the simplicity of the Montgomery ladder); this is in particular the approach
taken by EdDSA [BDL+12]. It was not until the quotient Digital Signature Algorithm
(qDSA) [RS17] was proposed by Renes and Smith last year that one could reuse the

4

scalarmultiplication algorithm and the public key ofX25519-based ECDHKE for sig-
natures without modifying the format at all. The qDSA is a high-speed, high-security
signature scheme that relies on x-only arithmetic and can be instantiated with Mont-
gomery curves (such as Curve25519) or Kummer surfaces. At a high-level, it closely
resembles Schnorr signatures and is proved secure in the random oracle model as
well. Due to its efficiency and its compatibility with X25519, the qDSA is expected
to be deployed in real-world constrained embedded systems, such as IoT devices.
Some improvements to the signature generation and verification of qDSA have been
recently proposed by [FFAL17].

1.5 Contributions
In this work, which is essentially based on the publication [TTA18], the following
main results are achieved:

• Chapters 4 and 5. Our first contribution is the optimized range reduction
algorithm in Bleichenbacher’s attack which overcomes the memory barrier of
previous work while maintaining a practical level of efficiency in terms of time
complexity. We designed the range reduction algorithm based on Howgrave-
Graham–Joux’s version [HGJ10] of Schroeppel–Shamir algorithm [SS81], which
was originally proposed as a knapsack problem solver. The idea of making use
of Schroeppel–Shamir was mentioned by Bleichenbacher himself, but it has
never been formally evaluated in the literature. Our approach has two merits:
first, it has a lower space complexity, and therefore requires fewer input signa-
tures than the previous methods did in order to perform the same level of range
reduction. Second, our algorithm can be parallelized in a very straightforward
fashion with low communication overhead. Note that this contribution is in-
dependent of the second one, since Bleichenbacher’s attack applies not only
to qDSA, but to any Schnorr-like signatures generated from biased or partially
exposed nonces.
We first recall Bleichenbacher’s attack framework in Chapter 4; Chapter 5 de-
scribes our approach to the range reduction in detail and presents the theoretical
results on the lower bound for the amount of input signatures for the algorithm
to work correctly within Bleichenbacher’s framework, including performance
comparison with previous nonce attack techniques.

• Chapter 3. As a separate contribution, we show that qDSA is yet another
victim of the attacks against nonces. We propose two fault attack techniques
against the qDSA instantiated with Curve25519 in order to induce 3-bit and
2-bit bias in its nonces. Our fault injection methods perturb the base point of

5

Curve25519 to a point of non-prime order, so that its scalar multiplication by
nonce reveals the few least significant bits (LSB) of it. The LSB obtained due to
faults can be simply exploited to create bias in the most significant bits (MSB)
of nonces. We describe those two attacks and straightforward countermeasures
in Chapter 3.

• Chapter 6. Combining our two contributions, we are able to achieve a full se-
cret key recovery1 on qDSA by applying our version of Bleichenbacher’s attack
to these faulty signatures. Using a hybrid parallelization model relying on both
shared and distributed memory, we achieve a very efficient implementation of
our highly scalable range reduction algorithm. This allows us to complete Ble-
ichenbacher’s attack in the 252-bit prime order subgroup of Curve25519 within
a reasonable time frame and using relatively modest computational resources
both for 3-bit nonce exposure and for the much harder case of 2-bit nonce ex-
posure. To the best of our knowledge, an attack against 252-bit group with
such small exposures of the nonces has never been addressed before. Hence,
both of these computations, and particularly the latter, set new records in the
implementation of Bleichenbacher’s attack. Chapter 6 describes those imple-
mentation techniques and provides our experimental results in detail.

We stress that the complete attack, especially in the 2-bit bias case, is not entirely
practical, as it both requires a large number of faulty signatures, and targets a slightly
modified version of the qDSA reference implementation. Nevertheless, it showcases
a number of interesting optimizations of Bleichenbacher’s attack in a concrete set-
ting, and also has the valuable takeaway that clearing cofactors in qDSA signature
generation (or indeed, any Schnorr-like signature using x-only arithmetic) is a simple
and important security measure.

1.6 Related Work
Bleichenbacher’s nonce attack against DSA was first proposed in [Ble00] and his
own early experimental results include a full key recovery on 160-bit DSA given a
nonce leakage of log 3 ≈ 1.58 bits for 222 signatures2 and 1 bit exposure for 224 sig-

1To be precise, the secret signing key consists of two 256-bit values d and d′, and we only recover
d. However, d′ is only used to make the scheme deterministic; signatures generated with a different d′
still pass validation. Therefore, recovering d is sufficient to forge signatures on any message, although
those signatures are distinct from those produced by the legitimate owner of the secret key. See the
discussion in Section 2.2.

2This record was reportedly achieved by “clever meet-in-the-middle techniques” [NS02, §1.3].
Since there is no available publication of this attack by Bleichenbacher, we were not able to verify the
original range reduction method in detail.

6

natures [Ble05]. De Mulder et al. revisited his method in [DMHMP14] and success-
fully performed a key recovery attack against ECDSA over NIST P-384 and brain-
poolP384r1 using 4000 signatures with 5 bits of the nonces known. After that, Aranha
et al. [AFG+14] utilizedBleichenbacher’smethod to attack ECDSAover SECGP160
R1 with 233 signatures of 1-bit biased nonces.

Recovering the secret key from the signatures knowing partial bits of the nonces
reduces to an instance of the hidden number problem (HNP) of Boneh andVenkatesan
[BV96]. Howgrave-Graham and Smart first developed lattice attacks in [HGS01] to
recover the DSA secret key over a 160-bit group using 30 signatures with 8 bits of the
nonces known. Nguyen and Shparlinski in [NS02, NS03] later analyzed the lattice
attacks in detail and presented the experimental results of the attack against 160-bit
DSA using 100 signatures with only 3 bits of the nonces known. The largest group
size and the smallest nonce exposure broken by lattice attacks in published literature
so far have been 160-bit DSA signatures with 2-bit nonce exposure, broken by Liu
and Nguyen [LN13], and 256-bit SM2 signatures with 3-bit nonce exposure, attacked
by Liu, Chen and Li [LCL13]. Side-channel analysis and fault attacks have been often
utilized in conjunction with lattice attacks to obtain the partial information of nonces.
Such concrete attacks appear e.g., in [NNTW05, BvdPSY14, BFMT16].

The first fault attack was discovered by Boneh, DeMillo and Lipton, which is
often referred to as the Bellcore attack [BDL97]. This attack was against an imple-
mentation of RSA based on the Chinese Remainder Theorem. Various fault injection
techniques and countermeasures are described in [BCN+06]. In [FLRV08], Fouque et
al. proposed a fault attack targeting the base point on non-twist-secure Montgomery
curves. The idea of exploiting the low order points on Curve25519, upon which
one of our fault attacks relies, was recently explored by Genkin, Valenta and Yarom
[GVY17] in the context of attack against ECDH.

7

Chapter 2

Preliminaries

2.1 Notations
In order to avoid confusion, we denote an index by an italic i and the imaginary unit
by a roman i. A variant of big-O notation Õ will be used meaning that logarithm
factors are omitted.

We denote b-LSB/MSB of an integer k by LSBb(k) and MSBb(k), respectively,
assuming that k is represented as a fixed-length binary string. (The bit-length is typi-
cally 252-bit in this paper.) In Chapter 5, we will often use the binary representation
of (τ + 1)-bit integer η, which is denoted as follows:

η = ητ+1∥ . . . ∥η1 =
τ+1∑
i=1

ηi2
i−1

where ηi ∈ {0, 1} for i = 1, . . . , τ + 1. Moreover, we define a new notation η[a:b] to
represent the substring of η and its corresponding value:

η[a:b] := ηa∥ . . . ∥ηb =
a∑

i=b

ηi2
i−b

where 1 ≤ b ≤ a ≤ τ + 1.

2.2 The quotient Digital Signature Algorithm
The quotient Digital Signature Algorithm (qDSA) is a variant of Schnorr signature
scheme that operates on Kummer varieties and offers a key pair compatible with
X25519-based Diffie–Hellman key exchange protocols [RS17]. We briefly recall the

8

x-only arithmetic of Montgomery curves discovered in [Mon87] and the qDSA sig-
nature scheme instantiated with Curve25519 [Ber06], the most widely-known Mont-
gomery curve. For more comprehensive introduction to Montgomery curves and
Montgomery’s ladder, see, e.g., [CS17] or [BL17].

Montgomery Curves and Their Arithmetic

Let p be a prime. A Montgomery curve defined over the finite field Fp is an elliptic
curve defined by an affine equation

EA,B/Fp : By2 = x3 + Ax2 + x,

where the coefficient A and B are in Fp such that A2 ̸= 4 and B ̸= 0.
Using the projective representation (X : Y : Z), where x = X/Z and y = Y /Z,

we have the projective model

EA,B/Fp : BY 2Z = X3 + AX2Z +XZ2.

Note that the point at infinity O = (0 : 1 : 0) is the only point where Z = 0.
Montgomery observed that the arithmetic in the above model does not involve

y-coordinates. Namely, let P = (XP : YP : ZP) and Q = (XQ : YQ : ZQ) be two
distinct points on EA,B, the point addition and doubling are defined as follows:

XP+Q = ZP−Q[(XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ)]
2

ZP+Q = XP−Q[(XP − ZP)(XQ + ZQ)− (XP + ZP)(XQ − ZQ)]
2

X[2]P = (XP + ZP)
2(XP − ZP)

2

Z[2]P = 4XPZP ((XP − ZP)
2 + ((A+ 2)/4)(4XPZP))

where XP+Q/ZP+Q, XP−Q/ZP−Q and X[2]P/Z[2]P are the x-coordinates of P + Q,
P −Q and [2]P , respectively.

Montgomery also proposed the algorithm, known asMontgomery’s ladder, which
efficiently computes the x-coordinate of the scalar multiplication [k]P using only the
point addition and doubling operations above. Therefore, it suffices to consider the
points mapped into a one-dimensional projective space P1(Fp), which is simply the
x-line. Formally speaking, letEA,B/⟨±1⟩ be the Kummer line ofEA,B and P = (X :
Y : Z) an elliptic curve point, if the quotient map x : EA,B → EA,B/⟨±1⟩ ∼= P1(Fp)
is defined as

x : P 7→ ±P =

{
(X : Z) if P ̸= O

(1 : 0) if P = O

then the Montgomery’s ladder efficiently computes the scalar multiplication on P1:

Ladder : (k,±P) 7→ ±[k]P.

9

We omit the details of Ladder algorithm here. What readers should keep in mind is
that it does not involve y-coordinates at all to compute the scalar multiplication.

qDSA Signature Generation

Algorithm 1 qDSA signature generation
Input: (d, d′) ∈ {0, 1}2×256: secret key, xQ: compressed point of the public key
±Q = ±[d]P ,M ∈ {0, 1}∗: message to be signed, D: domain parameters

Output: a valid signature (xR, s)
1: k ← H(d′||M) mod n
2: ±R = (XR : ZR)← Ladder(k,±P)
3: xR ← Compress(±R)
4: h← H(xR||xQ||M) ▷ ensure LSB1(h) = 0
5: s← k − hd mod n
6: return (xR, s)

Algorithm 1 specifies the signature generation algorithm of qDSA. Here the do-
main parameters are

D := (p,A,B, P, n,H)

where p is a large prime such that log2 p ≈ 252, A,B ∈ Fp are coefficients that
determine a Montgomery elliptic curve EA,B/Fp, P ∈ EA,B(Fp) is a base point of
prime order n, and H : {0, 1}∗ → {0, 1}512 is a cryptographic hash function. The
qDSA also uses the function Compress : P1(Fp)→ Fp to compress a projective point
as follows:

Compress : ±P = (X : Z) 7→ xP = Zp−2 ·X.

The value k at line 1 in Algorithm 1 is typically called nonce. From the line 5, the
nonce obviously satisfies the following congruence relation:

k ≡ s+ hd mod n. (1)

Note that d′ is only used as a seed and does not get involved in the verification at
all. Hence, knowing d allows an attacker to generate a valid signature on arbitrary
messages, even though the forged signatures are distinct from legitimate ones. In this
paper, we will refer to d as the secret key for convenience.

Curve25519 Parameter Set

In the qDSA instance equipped with Curve25519, the parameters are specified as
follows:

10

• p = 2255 − 19.

• (A,B) = (486662, 1).

• Base point ±P = (9 : 1) of prime order n, where n is slightly over 2252.

• Cofactor is 8 and EA,B(Fp) ∼= Z/8Z× Z/nZ.

• Cofactor of the quadratic twist of EA,B is 4.

2.3 Knapsack Problem
Although there exist several variants, we refer to the computational 0–1 knapsack
problem as the knapsack problem. It can be stated as follows: given a set of S positive
integers {h0, . . . , hS−1} with some target value T , find the set of coefficients ωi ∈
{0, 1} such that T =

∑S−1
i=0 ωihi.

11

Chapter 3

Fault Attacks on qDSA

In this chapter, we describe several variants of a fault attack targeting the base point
of scalar multiplication in qDSA signatures.

Our basic attack strategy is as follows. The qDSA signing algorithm uses the
Montgomery ladder to compute the scalar multiplication R = [k]P (up to sign),
where k is the sensitive nonce value associated with the signed message; and the
point R (or rather, its x-coordinate xR) is output as part of the signature. Here, the
correct base point P is a generator of the cyclic subgroup of order n in EA,B(Fp) ∼=
Z/8Z× Z/nZ.

Suppose that we can inject a fault into the device computing qDSA signatures
so as to replace the point P by a different, faulty point P̃ still on EA,B, but with
a different order, say 8n. Then, even without knowing the exact value of P̃ , one
can deduce information on k from the signature element xR. For example, if xR

corresponds to a point of exact order n, we can show that k must be a multiple of
8: in other words, we obtain leakage information on the 3 least significant bits of k.
As discussed in Section 3.3 below, such a bias can be turned into a bias on the most
significant bits, which is enough to apply Bleichenbacher’s attacks.

In the following sections, we describe several variants of this general approach,
with a particular focus on how these attacks can be carried out in practice against prac-
tical implementations of qDSA. We also describe concrete fault attack experiments
against a barely modified version of Renes and Smith’s 8-bit AVR implementation of
qDSA, on the XMEGA128D4 microcontroller of the ChipWhisperer-Lite low-cost
side-channel and glitch attack evaluation board [OC14]. Before delving into those
details, however, two preliminary remarks are in order.

First, we point out that our attack is rather novel in the sense that it relies on the
new and unique structure of the qDSA signature scheme.

• On the one hand, the attack depends in a crucial way on the use of x-only arith-
metic. Indeed, if we perturb a point P given by two coordinates, the resulting

12

faulty point P̃ will end up with overwhelming probability on a completely dif-
ferent curve among many possible choices, and even in a setting where the
scalar multiplication by k still makes sense (as in the differential fault attack of
Biehl et al. [BMM00]), the information on the curve on which P̃ lies is lost in
the signature, which contains only the x-coordinate of R̃ = [k]P̃ . This makes
our strategy inapplicable to those settings.

• On the other hand, implementations using x-only arithmetic roughly divide into
two families. Older, careless ones, tend to fall prey to the much simpler twist
fault attack of Fouque et al. [FLRV08], in which case our strategy does apply,
but is more complex and costly than necessary. Conversely, modern, careful
implementations such asX25519 [Ber06] and other Diffie–Hellman implemen-
tations based on SafeCurves [BL], usually clear cofactors: in the description
above, this means that the scalar k would be 8 times a uniformly random el-
ement of {0, . . . , n − 1}, and hence learning its 3 least significant bits would
provide no information. That countermeasure thwarts our attack, even setting
aside the fact that a few bits of leakage onDiffie–Hellman keys is much less of a
security issue than nonce leakage in Schnorr-like signatures. Interestingly, the
authors of qDSA apply that “clamping” technique to their secret keys [RS17,
§3.3], but not to the nonces used in signature generation, which lets us carry
out our attack.

Incidentally, the first point also explains why our attack applies to the genus 1 in-
stantiation of qDSA (using Curve25519), but does not readily extend to the genus
2 instantiation (using the Gaudry–Schost Kummer surface). Indeed, the base point
on the Kummer surface is represented by two coordinates, and injecting a fault will
typically yield a point outside the surface, which prevents the attack for the same
reason.

A second issue that should perhaps be stressed is that one can certainly consider
much simpler fault attacks than our own on an unprotected implementation of qDSA:
it is both easier and more effective to directly perturb the generation of the nonce k.
For example, that generation typically ends with what essentially amounts to a copy
of the final value into the array containing k (in the public qDSA implementations,
this is done in the group_scalar_get64 function). That array copy is a loop, and
exiting the loop early results in a nonce with most of its bits equal to zero. It is then
possible to recover the full secret key with as few as two signatures generated with
those highly biased nonces, using e.g. the lattice attack of Howgrave-Graham and
Smart [HGS01]. Note that this applies regardless of whether nonces are generated
deterministically as in qDSA or probabilistically as in ECDSA.

However, the sensitivity of the nonce in Schnorr-like signature is verywell-known,
and one therefore expects a serious implementation that may be exposed to fault at-
tacks to take appropriate countermeasures to protect against it (such as using double

13

loop counters in the final array copy to check that the copy has completed success-
fully). On the contrary, our attack strategy is novel, and targets a part of the scalar
multiplication that does not normally lead to serious attacks, as discussed above.
It is thus much more likely to be left unprotected in real-world settings. Thus, we
think that pointing out the corresponding threat is important, especially as qDSA is a
scheme geared towards embedded devices (the target platforms of the accompanying
implementations are AVR ATmega and ARM Cortex M0 microcontrollers [RS17,
§7]).

3.1 Random Semi-Permanent Fault on the Base Point
Turning now to our attacks, we first describe a simple fault attack in a model that
closely follows the strategy sketched at the beginning of this chapter.

Attack model. We suppose that the fault attacker is able to modify the base point
P (represented by its x-coordinate on the quotient EA,B/⟨±1⟩ ∼= P1) to a “somewhat
random” faulty point P̃ , and then obtain several signatures computed with that faulty
base point. We do not assume that the attacker knows the faulty point P̃ once the
fault is injected.

Realization of the model. Such a model can easily be realized in implementations
where the representation of the base point is first loaded into memory (say at device
startup) and then used directly whenever exponentiations are computed. This is a
relatively common implementation pattern for embedded implementations of elliptic
curve cryptography (for example, the micro-ecc library [Mac] works that way). It is
then possible to induce a faulty base point either with faults on program flow at first
load time (using e.g. clock or voltage glitches) so that some part of the corresponding
array remains uninitialized/random, or with faults on memory (using e.g. optical
attacks [SA02]) so as to change some bit patterns within the existing array for P .

We note however that the model is more difficult to realize against the microcon-
troller implementations described in the original qDSA paper [RS17], due to the fact
that the base point is recomputed before each signature generation. It may be possible
to achieve a similar effect as above by carrying out a fault attack on programmemory,
so that e.g. the instruction that writes the byte 0x09 into the lowest-order byte of the
base point is modified to write another byte instead (the same every time), but this
presumably requires a significantly higher level of precision in the targeting of laser
beams or x-rays.

14

Description of the fault attack. Suppose for simplicity that the fault attack yields a
faulty base point P̃ whose x-coordinate x̃ is uniformly random in Fp (we will see later
on that the attack also works for values x̃ that are not anywhere close to uniform).

In that case, we first observe that with probability close to 1/2, x̃ is the abscissa
of an actual point on the curve EA,B, and it is otherwise the abscissa of a point on
the quadratic twist of EA,B. More precisely, excluding x̃ = 0 (which corresponds
to the point of order 2 both on the curve and its twist), the first case happens with
probability exactly (4n− 1)/p and the second one with probability (p− 4n)/p, both
of which are in [1/2−2−128, 1/2+2−128]. From a signature generated with this faulty
P̃ , it is easy to distinguish between the two cases, since we get the x-coordinate of
R̃ = [k]P̃ , which will correspond to a point on EA,B when P̃ itself is on the curve,
and on the twist when P̃ itself is on the twist.

If we get a point on the twist, we reject it by injecting another fault on the base
point (restarting the device if necessary), because the smaller cofactor of the twist (i.e.
cofactor 4) would result in a less efficient attack. We also reject faulty base points P̃
that yield a value R̃ of order at most 8 in the signature (in which case P̃ itself must
have been of order at most 8 since k < n); such exceptional points happen only with
negligible probability anyway.

After this rejection, we know that P̃ is on EA,B, and has order 8n, 4n, 2n or n; its
abscissa x̃ is uniformly distributed among the 4n − 4 values in Fp corresponding to
such points. Moreover, 2n−2 of these values correspond to points of exact order 8n.
Therefore, with probability 1/2, P̃ is of exact order 8n, and again, it is easy to check
that from generated signatures: simply compute [4n](±R̃) = ±[4nk]P̃ . If P̃ is of
order less than 8n, this is always the point at infinity, whereas if it has order exactly
8n, this is the non-identity point of order 2 whenever k < n is odd.

We can thus carry out another rejection step by generating e.g. 4 signatures
with the faulty base point P̃ , and injecting another fault if for all of these signatures
[4n](±R̃) is the point at infinity. This always rejects points of order at most 4n, and
also rejects points of order 8n with probability 2−4.

Overall, afterM fault injections on average, where:

M =
p

4n− 4
· 2 · 1

1− 2−4
≈ 4.27 (2)

we obtain a faulty base point P̃ of order exactly 8n.
Once such a point P̃ is obtained, we claim that we can easily learn the 3 least

significant bits of k for a constant fraction of the signatures generated with it.
Indeed, for each such signature, we can compute, up to sign, the point:

R′ = [n](±R̃) = ±[nk]P̃ ,

which has order dividing 8. If it is the point at infinity or the point of exact order 2,
both of which are equal to their inverses, we can directly obtain that k ≡ 0 (mod 8)

15

and k ≡ 4 (mod 8) respectively. In other words, if R′ is the point at infinity, we get
LSB3(k) = 000, and if R′ is the point of order 2, then LSB3(k) = 100. However, the
points of exact order 4 and 8 are not invariant under [±1], so if R′ is such a point, we
cannot hope to learn 3 full bits of k; for example, if R′ is of order 4, we only obtain
k ≡ 2 or 6 (mod 8), but it is not possible to distinguish between both cases since we
only get R′ up to sign.

To obtain many signatures for which the 3 least significant bits of k are known, it
then suffices to generate signatures with the faulty base point P̃ and only keep those
which satisfy that the point R′ above is either the point at infinity or the point of
order 2. This is the case whenever k is divisible by 4; thus, we keep a quarter of the
generated signatures.

Once sufficiently many signatures have been collected, they can be used to carry
out Bleichenbacher’s attack as described in the following chapters (see in particular
Section 6.2 for concrete numbers of signatures, attack timings and memory consump-
tion). A trivial but important point to note is that known LSBs by themselves do not
translate into significant bias in the sense used in Bleichenbacher’s attack (i.e. a large
value for the bias function defined in Section 4.1). To achieve large bias, we first need
to apply an affine transformation on signatures that map the partially known nonces
k to values with their MSBs equal to zero (in this case, the 3 MSBs, since we have
knowledge of 3 bits of k). This simple but crucial preprocessing step is described in
Section 3.3 below.

Attack with a non-uniform faulty point. We have described the attack in the case
when the fault injection yields a point P̃ with uniformly random abscissa x̃ in Fp.
However, uniformity is far from crucial. The only important condition that should
be satisfied is that the fault should result with significant probability in a point P̃ of
exact order 8n.

Heuristically, this is expected to happen for essentially any “naturally occurring”
subset of Fp of size much larger than 8. For example, consider the “fault on program
memory” scenario alluded to above, in which the attacker is able to replace the correct
base point of abscissa x = 9 by another base point P̃ whose abscissa x̃ is a random
integer still contained in a single byte (i.e. uniform between 0 and 255). The distribu-
tion is then very far from uniform in Fp, but one can easily check that 119 such values
x̃ correspond to a point on EA,B (and not its twist) with order at least n, and among
them, 65 correspond to a point of order exactly 8n. This means that the same attack
can be carried out as above in that setting. The only change is the expected number
of faults to inject, which instead of the estimate of Eq. (2) is slightly reduced to:

M =
256

65
· 1

1− 2−4
≈ 4.20.

It is a bit difficult to justify the heuristic above in a rigorous way, but arithmetic

16

techniques can be used to prove partial results in that direction. It follows from the
character sum estimates of Kohel and Shparlinki [KS00] that if x̃ is picked uniformly
at random in an interval of length > p1/2+ε, then it corresponds to a point on EA,B of
exact order 8n with probability 1/4 + O(p−ε). As a result, a fault attack inducing a
value x̃ of that form works identically to the one where x̃ is uniform over Fp, and the
expected required number of faults is very close to the one given by Eq. (2).

3.2 Instruction Skipping Fault on Base Point Initial-
ization

Although the fault model of the previous attack seems quite natural, it is difficult to
realize against the implementations of qDSA described in the original paper [RS17],
due to the fact that the representation of the base point P of Curve25519 is not stored
in memory in a permanent way, but reconstructed every time a signature computation
is carried out.

We now describe a fault attack that can easily be realized in practice on a very
slightly modified version of the AVR ATmega implementation of qDSA distributed
by the authors of the original paper. We also argue that the corresponding slight mod-
ification is plausible enough, and we mount the attack in practice on an XMEGA128
target using the ChipWhisperer-Lite low-cost side-channel and glitch attack evalua-
tion board [OC14].

Attack model. The attack model is quite simple: the attacker injects a suitably
synchronized fault upon signature generation that causes the reconstructed base point
P to be incorrectly computed. The abscissa is set to x̃ = 1 every time instead of the
correct x = 9, and the signature is generated using the corresponding faulty base
point P̃ . Note that this point P̃ is of exact order 4.

In addition, we also assume that the attacker obtains a side-channel trace of the
faulty execution of the signing algorithm. In that sense, the attack we will describe is
a so-called combined attack, that uses both faults and side-channels. We note how-
ever that this is not particularly restrictive: the synchronization of fault injection is
typically carried out by waveform matching of side-channel traces anyway, so us-
ing the collected traced for additional purposes doesn’t really strengthen the attack
model.

Realization of the model. The entry point for the Montgomery ladder implemen-
tation used in the qDSA source code is the ladder_base function reproduced in
Fig. 1(a). Its main goal is to initialize the base point P and then call the ladder proper.
More precisely, P is represented by its image in EA,B/⟨±1⟩ ∼= P1, with projective

17

1 void ladder_base(
2 ecp *r, const group_scalar *n
3) {
4 ecp base;
5 fe25519 basex;
6
7 fe25519_setzero(&base.X);
8 fe25519_setone(&base.Z);
9 base.X.v[0] = 9;
10 fe25519_copy(&basex, &base.X);
11
12 ladder(r, &base, &basex, n);
13 }

(a) Montgomery ladder entry point

1 void ladder_base_modified(
2 ecp *r, const group_scalar *n
3) {
4 ecp base;
5 fe25519 basex;
6
7 fe25519_setone(&base.X);
8 fe25519_setone(&base.Z);
9 base.X.v[0] = 9;
10 fe25519_copy(&basex, &base.X);
11
12 ladder(r, &base, &basex, n);
13 }

(b) Modified, functionally equivalent version

Figure 1: Initialization of the base point in qDSA’s Montgomery ladder.

coordinates (X : Z) = (9 : 1). To set P as such, the code first sets theX component
(given by an array of 32 bytes) to 0 using the fe25519_setzero function, then the
Z component to 1 with fe25519_setone, and finally modifies the least significant
byte to 9.

The idea of our attack is to uses glitches to skip the execution of that last step. On
a platform like 8-bit AVR microcontrollers, this is relatively straightforward using
clock glitches.

Doing so on the unmodified code of Fig. 1(a) results in a faulty base point P̃ which
maps to (0 : 1) on P1 however: this is the point of exact order 2 on EA,B, instead
of a point of order 4 as desired. We can still obtain nonce leakage using that faulty
base point, but only on a single bit of the nonce. That leakage is not quite sufficient
to deduce a practical attack.

Suppose however that the code was written as in Fig. 1(b). The only change is
that theX component of the base point is first set using fe25519_setone instead of
fe25519_setzero. Of course, when executed correctly, the modified code is exactly
functionally equivalent to the original one. However, skipping the instruction that
changes the lowest order byte of X now results in a faulty base point P̃ which maps
to (1 : 1) on P1: this is a point of order 4 as required.

That change might seem artificial, but there are plausible reasons why one might
want to do it in practice. Most importantly, the function fe25519_setzero is almost
never used elsewhere in the qDSA library code (there is exactly one other occurrence
of it). Since reducing code size is a major concern for embedded implementations,
removing that rarely used function and replacing its two uses by fe25519_setone
(and adapting the code accordingly) makes sense. When compiling with avr-gcc

18

4.8.2, the change results in a code size reduction of 33 bytes, which can certainly
justify such a change when program memory is at a premium.

Description of the combined attack. Since we are able to obtain signatures gen-
erated with the faulty base point P̃ of order 4, the attack proceeds mostly as before.
According to the description of qDSA, signatures will then contain ±R̃ = ±[k]P̃ ,
which is of order 4 when k is odd, of order 2 when k ≡ 2 (mod 4), and the point at
infinity when k ≡ 0 (mod 4). In particular, we get LSB2(k) = 10 when ±R̃ is of
order 2, and LSB2(k) = 00 when it is the point at infinity.

This should thus yield 2LSBs of leakage on the nonce kwhenever k is odd (i.e. for
half of the generated signatures). After collecting sufficiently many such signatures
and applying the affine transformation of Section 3.3 to obtain biased MSBs, we
can then apply Bleichenbacher’s attack. Concrete parameters, timings and memory
consumption are provided in Section 6.1.

That simple description omits an important implementation detail that slightly
complicates the attack, however. Namely, the point ±R̃ ∈ P1 in signatures is repre-
sented in “affine coordinate” by a single element xR of Fp, and the point at infinity
does not really have a well-defined representation in those terms. This is not an is-
sue for correct executions of the qDSA algorithm, since the point at infinity happens
with negligible probability; however, it is crucial in our specific attack setting. We
therefore need to examine how xR is computed from the projective representation
(XR : ZR) output by the Montgomery ladder.

In the qDSA implementation, xR is computed by first inverting ZR using Fer-
mat’s little theorem, and then multiplying the result byXR. In other words, the code
computes:

xR ← Compress((XR : ZR)) = Zp−2
R ·XR.

In the case of our faulty point ±R̃, we have:

(XR̃ : ZR̃) =

{
(Lk : 0) when k ≡ 0 (mod 4)

(0 : Lk) when k ≡ 2 (mod 4)

where in both cases Lk ∈ Fp is a large, typically full-size value depending only on k.
In both cases, we therefore get:

xR̃ = Zp−2

R̃
·XR̃ = 0

and as a result, it is not possible to distinguish between the two cases just from the
value included in the signature.

However, from an implementation perspective again, there is a clear difference
between the two cases. When k ≡ 0 (mod 4), the value ZR̃ for which the device

19

Figure 2: The ChipWhisperer-Lite evaluation board, connected to its XMEGA mi-
crocontroller target.

computes the base field exponentiation Zp−2

R̃
is 0, whereas in the other case, it is a

large, random-looking element Lk in Fp. This difference should translate in a marked
difference in power consumption and other side-channel emanations during the com-
putation of this exponentiation operation!

Using side-channel leakage in addition to the fault, we are therefore able to dis-
tinguish between the two cases, and carry out the attack as expected.

Concrete glitch attack experiments. We successfully carried out the attack above
on the implementation of qDSA for 8-bit AVR microcontroller platform [Ren17b],
with the tweak of Fig. 1(b). The cryptographic code was otherwise left entirely un-
touched, except for the insertion of a trigger in the signing algorithm (before the call
to the ladder_base function) in order to facilitate the synchronization of injected
faults. That synchronization should be doable directly in hardware from the acquired
waveform (using e.g. oscilloscope SAD triggers) when using a more costly setup,
but a manual software trigger comes in handy in our low-cost setting. Note that the
qDSA implementation itself does not claim security against faults or physical attacks
in general; however, conducting the attack on a real-world target allows us to confirm
the validity of the fault model.

The attack was conducted on the ChipWhisperer-Lite side-channel and glitch at-
tack evaluation board [OC14], which comes with an AVR XMEGA128D4 micro-
controller target (Fig. 2). In order to use the accompanying software, we wrapped
the qDSA code into a program running on the XMEGA target that can sign messages
using the SimpleSerial serial console protocol supported by ChipWhisperer-Capture.
The program supports several single character serial commands (followed by hex-

20

Figure 3: Power trace of the device starting from the call to ladder_base: correct
execution (orange) and faulty one with glitch at offset 202 (red). Sampling rate is 4×
the clock frequency.

adecimal arguments), including in particular:

• k⟨32-byte hex string⟩: generate fresh key pair with the provided seed;

• p⟨16-byte hex string⟩: sign the provided message and return the first 32 bytes
of the signatures (the rest of the 80-byte signature can be displayed with addi-
tional commands if necessary);

• x: reset the program;

and other miscellaneous commands for e.g. signature verification. Once a key pair
has been generated, a typical interaction on the serial console looks as follows (where
the inputs are in blue and the outputs in black):

p8e230ea468bc5990f6a6820b5cb5f4b7
r614573B5BDB6E65F402BDBF2AFE3F67FCCD3F73B31680F16255EDF1B123B0658
z50
p3ae597975ad7c7574ee260cc14d724a1
rCAF7C938F5C180CB04E81586C2E6D0368D4CF0AB5C1A983BEA2FE1A0F2AA9C31
z50

where the blue lines ask for signatures on the provided messages, and the replies
starting with r give with first 32 bytes of the computed signature (corresponding to
the abscissa xR). The lines starting with z signal the end of the response (and 50
indicates that the entire signatures are 0x50 = 80 bytes long).

We then use the glitchmodule of ChipWhisperer-Capture to generate clock glitches
at selected positions during the execution of the program. After some trial and error,

21

Figure 4: Power traces of the device around 130 cycles after the call to compress:
blue (resp. red) traces correspond to R̃ of order 2 (resp. at infinity).

we find that XORed-in rectangular clock glitches of width 5% of the clock frequency,
inserted at 2.5% of the corresponding clock cycles cause reliably reproducible mis-
behavior of the microcontroller. We then increment the position at which the glitch
is inserted (as an offset from the trigger located right before the call to ladder_base
in the signing algorithm), and observe the results on the serial console. At offset 202
clock cycles, we finally observe the required fault:

p3ae597975ad7c7574ee260cc14d724a1
r00
z50

which we can confirm corresponds to skipping the assignment on step 9 of Fig. 1(b).
The power trace corresponding to the first few hundred cycles after the trigger is
reproduced in Fig. 3, both for the correct execution and for the faulty one. One can
clearly see a spike on the faulty trace when the glitch is injected, and how the skipped
instruction results in a shift to the left of the trace of the faulty execution compared
to the correct one after that point.

The fault is very reliably reproducible: in several hundred attempts at injecting
the glitch, the assignment instruction was skipped 100% of the time, resulting in the
same response

r00

as expected.
To finish validating the combined attack, we then check that it is indeed easy to

distinguish between the case when R̃ is of order 2 on curve, and when it is the point
at infinity. To do so, we plot corresponding power traces at a later point during the

22

execution of the program, within the base field exponentiation used to compute the
modular inverse of the coordinate ZR̃.

Fig. 4 shows two sets of several traces corresponding to faulty signatures of ran-
dommessages. The traces in blue all correspond to the case when R̃ is of order 2, and
the traces in red to the case when it is the point at infinity. It is visually clear that the
two sets of traces are easy to distinguish from each other, and that one can construct
a very accurate distinguisher even from a small number of samples around that part
of the execution.

3.3 Preprocessing Signatures forBleichenbacher’sAt-
tack

Both of the attacks described above allow us to obtain multiple qDSA signatures for
which a few LSBs of the nonces k are known. We would like to use those signatures
with partial nonce exposure to retrieve the secret key d.

This problem can be seen as an instance of Boneh and Venkatesan’s hidden num-
ber problem (HNP) [BV96]: given sufficiently many equations of the form (1), in
which the pair (h, s) is known, and partial information on k is also given, recover d.
Note that in our setting, the pair (h, s) is indeed known, since s is directly part of the
signature, and h can be recomputed as h = H(xR∥xQ∥M) (where xR is again part of
the signature; in particular, it is the faulty abscissa xR̃ in the case of faulty signatures).

The HNP algorithm used in this paper is essentially due to Bleichenbacher, and
relies on a search for heavy Fourier coefficients. However, those heavy Fourier coef-
ficients only reveal the secret key in an HNP instance where the most significant bits
of nonces k are constant (say identically zero). Thus, our instance with known LSBs
of k needs to be preprocessed in order to be amenable to Bleichenbacher’s attack.
This preprocessing stage, which is folklore, proceeds as follows.

Suppose that in our setting, the b least significant bits of nonces are known, i.e.
r := k mod 2b is known for each nonce k. Subtracting r from Eq. (1) and dividing
by 2b, we get:

(k − r)2−b ≡ (s− r)2−b + hd2−b mod n.

Nowdefine k′ := (k−r)2−b, s′ := (s−r)2−b, and h′ := h2−b, where all computations
are carried out in Z/nZ. The previous equation can be rewritten as:

k′ ≡ s′ + h′d mod n

where MSBb(k
′) is the all zero bit string and k′ is uniformly distributed on

[
0,
⌊
(n− 1)/2b

⌋]
.

Hence, we get an equation of the correct form to apply Bleichenbacher’s attack.
To simplify the discussion in subsequent chapters, we discard the signatures with

23

2252 ≤ h′ < n; such an exceptional case happens only with negligible probability
anyway.

In the rest of this paper, we assume that S signatures are generated with either of
the fault attacks, and preprocessed as above by the attacker. For simplicity, we omit
the prime symbols and refer to {(hi, si)}S−1

i=0 as the set of preprocessed signatures,
and {ki}S−1

i=0 as the biased nonces satisfying{
ki ≡ si + hid mod n

MSBb(ki) = 0…0
for 0 ≤ i ≤ S − 1.

3.4 Possible Countermeasures
Before turning to the description of Bleichenbacher’s attack and of our optimizations
thereof, we first mention a few countermeasures that can be applied to qDSA imple-
mentations in order to thwart the attacks of this chapter.

Since our attacks all target the base point in the Montgomery ladder computation,
using generic techniques to protect that value should prevent the attack. Concrete
ways of doing so include:

• carrying out consistency checks of proper execution when copying the value
into memory (e.g. double loop counters);

• writing the value twice if it is reconstructed every time, so that a single instruc-
tion skip fault cannot corrupt it;

• computing a CRC checksum of the base point and checking that it gives the
expected result before releasing a generated signature, etc.

Rather than these generic countermeasures, however, one could recommend in-
stead to slightly modify the signing algorithm in a way that completely prevents at-
tacks based on the existence of points of small order. Namely, instead of carrying
out scalar multiplication by the nonce k, use 8k (or if using a curve E other than
Curve25519, use α · k, where α is the least common multiple of the cofactors of E
and its twist), and adjust the verification algorithm accordingly. This ensures that,
even if the base point is tampered with somehow, the adversary will not be able to
map the result of the scalar multiplication to a non-identity element of a subgroup of
small order. This thwarts the attacks of this chapter in particular.

24

Chapter 4

Bleichenbacher’s Nonce Attack

In this part, we recall the Bleichenbacher’s attack method. We also formulate the
conditions required for the range reduction phase, which is by far the most costly
phase in the attack. Note that Bleichenbacher’s attack applies in principle to any
Schnorr-like signatures (as defined in Section 1.2) generated with biased nonces.

Algorithm 2 specifies the high-level procedures of the attack. The step-by-step
guide will be provided in the following sections.

4.1 Bias Definition and Properties
We first formalize the bias of random variables in the form of discrete Fourier trans-
form. Let us recall the definition of the bias presented at [Ble00] and its basic prop-
erties.

Definition 1. LetX be a random variable over Z/nZ. The biasBn(X) is defined as

Bn(X) = E(e2πiX/n) = Bn(X mod n).

where E(X) represents the mean. Likewise, the sampled bias of a set of points
V = {vi}L−1

i=0 in Z/nZ is defined by

Bn(V) =
1

L

L−1∑
i=0

e2πivi/n.

The bias as defined above satisfies the following properties. See [DMHMP14]
for the proof.

Lemma 1. Let X and Y be random variables.

(a) IfX follows the uniform distribution over the interval [0, n)∩Z, thenBn(X) =
0.

25

Algorithm 2 Bleichenbacher’s nonce attack framework
Input:
{(hi, si)}S−1

i=0 - the set of preprocessed Schnorr-like signatures with b-bit biased
nonces
S - number of input signatures
L - number of linear combinations to be found

Output: ℓ most significant bits of d
1: Range Reduction
2: Find L = 2ℓ reduced signatures {(h′

j, s
′
j)}L−1

j=0 , where (h′
j, s

′
j) =

(
∑

i ωj,ihi,
∑

i ωj,isi) is a pair of linear combinations with the coefficients ωj,i ∈
{−1, 0, 1}, such that
[C1] Small: 0 ≤ h′

j < L

[C2] Sparse: |Bn(K)|Ω > 1/
√
L, where Ω :=

∑
i |ωj,i|

for 0 ≤ j ≤ L− 1

3: Bias Computation
4: Z =: (Z0, . . . ZL−1)← (0, . . . , 0)
5: for j = 0 to L− 1 do
6: Zh′

j
← Zh′

j
+ e2πis

′
j/n

7: end for
8: W ← iFFT(Z) = (Bn(Kw0), Bn(Kw1), . . . , Bn(KwL−1

)), where wm = mn/L
withm ∈ [0, L− 1]

9: Find the valuem such that |Bn(Kwm)| is maximal
10: return MSBℓ(⌊wm⌋)

26

(b) If X and Y are independent, then Bn(X + Y) = Bn(X)Bn(Y).

(c) Bn(−X) = Bn(X), where Bn(X) denotes the complex conjugate of Bn(X).

(d) If X follows the uniform distribution over the interval [0, T) ∩ Z with T ∈
[1, n] ∩ Z, then |Bn(X)| = 1

T

∣∣∣ sin(πT/n)
sin(π/n)

∣∣∣ and |Bn(X)| is real-valued with 0 ≤
|Bn(X)| ≤ 1.

The following claim is useful for approximating the bias value when the nonces
are b-bit biased.

Corollary 1. Let K be a random variable. If K follows the uniform distribution
over the integer interval

[
0,
⌊
(n− 1)/2b

⌋]
∩ Z for some positive integer b, then the

bias value |Bn(K)| satisfies

|Bn(K)| → 2b

π
· sin

(
π/2b

)
as n→∞

Proof. Since
⌊
(n− 1)/2b

⌋
= (n−1)/2b−δ, with 0 ≤ δ < 1, we obtain the following

by applying Lemma 1-(d):

|Bn(K)| = 1

(n− 1)/2b − δ + 1

∣∣∣∣∣sin
(
π
(
(n− 1)/2b − δ + 1

)
/n
)

sin (π/n)

∣∣∣∣∣
=

2b/π

1− (1 + 2bδ − 2b)/n
· π/n

|sin (π/n)|
·
∣∣sin (π/2b − π(1/2b + δ − 1)/n

)∣∣
→ 2b

π
· sin

(
π/2b

)
as n→∞.

In this paper, we focus on the case of b = 2 and b = 3; if n is sufficiently large,
Corollary 1 gives the approximate bias values |Bn(K)| ≈ 0.9003 for b = 2, and
|Bn(K)| ≈ 0.9745 for b = 3, respectively.

4.2 Range Reduction
The main idea of Bleichenbacher’s attack is finding a secret key candidate that leads
to the peak bias value: given a set of preprocessed pairs {(hi, si)}S−1

i=0 with biased
nonces, we would like to find the candidate w ∈ Z/nZ such that its corresponding
set of nonce candidates Kw := {si + hiw}S−1

i=0 shows a significant nonzero sampled
bias. If w is equal to the true secret, i.e., w = d, we obtain a set of genuine biased

27

nonces K = {ki}S−1
i=0 and its sampled bias |Bn(K)| is close to 1, which we call the

peak; if the guess is wrong, i.e., w ̸= d, the sampled bias can be approximated by
1/
√
S, which we call noise. Since Schnorr-like signatures allow anyone to compute

a pair (h, s) that holds Eq. (1), we thus have a way to determine the secret value d by
evaluating |Bn(Kw)| for all w ∈ Z/nZ in a brute force way.

Condition 1: Small Linear Combinations. However, checking all possible w ∈
Z/nZ is computationally infeasible if n is large. Here a range reduction in Algo-
rithm 2 plays an important role to avoid this problem. Bleichenbacher’s observation
is as follows: one can broaden the peak of the bias value by reducing the size of h
values, so that it suffices to find a candidate close to d, instead of the exact solution.
[DMHMP14] and [AFG+14] examined his approach more concretely; they showed
that by taking linear combinations modulo n of the original (hi, si) pairs in a way
that h′

j values are bounded by some L, as in the condition [C1], the width of the peak
broadens to approximately n/L, and therefore the peak area can be detected by evalu-
ating the sampled bias of L-evenly-spaced values of w in [0, n−1]1. Fig. 5 illustrates
this situation intuitively.

Condition 2: Sparse Linear Combinations. Now let us look into the sparsity
condition [C2]. Unfortunately, the range reduction has a negative side effect: the
more dense the linear combinations become, the shorter the height of the peak gets.
More concretely, [C2] can be shown as follows. Let us assume that ki = si + hid
mod n and a range reduction algorithm constructs the pair of linear combinations
(h′

j, s
′
j) = (

∑
i ωj,ihi,

∑
i ωj,isi), where ωj,i ∈ {−1, 0, 1} (we will omit the index j

for simplicity). Then its corresponding nonce becomes k′ =
∑

i ωiki. Let Ki be a
random variable (which corresponds to a nonce ki) uniformly distributed on the inter-

Reduce h s.t.

0 ≤ h′ < L

w

|Bn(Kw)|

1√
S

d

w

|Bn(K′
w)|

1√
L

n
L

|Bn(K)|Ω

d

Figure 5: The effect of range reduction

1Rigorously speaking, [DMHMP14] only proved that the peak width broadens to n/2L, but
[AFG+14] empirically confirmed that checkingL-evenly-spaced points is sufficient to detect the peak
in practice.

28

val
[
0,
⌊
(n− 1)/2b

⌋]
and let us assume thatKi1 andKi2 are independent if i1 ̸= i2.

Then applying (b) and (c) of Lemma 1, Bn(K0) = Bn(K1) = . . . = Bn(KS−1) and

Bn

(∑
i

ωiKi

)
= Bn

(∑
i+

Ki+ −
∑
i−

Ki−

)
= Bn

(∑
i+

Ki+

)
·Bn

(∑
i−

Ki−

)
=
∏
i+

Bn (Ki+) ·
∏
i−

Bn (Ki−) =
∏
i+

Bn (Ki+) ·
∏
i−

Bn (Ki−)

where i+ ∈ {i | ωi = 1} and i− ∈ {i | ωi = −1}. Hence taking the absolute value,
we obtain ∣∣∣∣∣Bn

(∑
i

ωiKi

)∣∣∣∣∣ = |Bn(K)|Ω

where Ω :=
∑

i |ωi|. This means that the height of the peak diminishes as the sum of
coefficients Ω for the linear combination increases. Since the noise is approximately
1/
√
L and the peak value needs to serve as a distinguisher, we obtain the condition

[C2] for the peak not to vanish.
In summary, finding small and sparse linear combinations for sufficiently small

L (i.e., small enough for the FFT to be tractable) is the key to performing Bleichen-
bacher’s attack efficiently. Let us briefly review the previous range reduction algo-
rithms.

Sort-and-difference

We present the sort-and-difference algorithm conducted by [AFG+14] as the most
straightforward instance of a range reduction algorithm. It simply works as shown
below:

1. Sort the list2 {(hi, si)}S−1
i=0 in ascending order by the hi values.

2. Take the successive differences to create a new list {(h′
j, s

′
j)}S−2

j=0 := {(hi+1 −
hi, si+1 − si)}S−2

i=0 .

3. Repeat.

With this approach, they successfully performed the key recovery attack against ECDSA
on 160-bit curve with 1-bit nonce bias.

As a theoretical contribution, they analytically proved that approximately (1 −
e−2γ)S signatures are obtained such that h′

j < 2logn−logS+γ after the first application

2We will often refer to an ordered set as a list

29

of sort-and-difference, where γ ∈ Z is a parameter. However, because the h′ values
are not uniformly random and independently distributed anymore, their experimental
result showed that the ratio (1 − e−2γ) does not hold after the second iterations and
the actual ratio drops as the algorithm iterates, i.e., the number of reduced signatures
such that h′

j < 2logn−ι(logS−γ) after ι rounds is less than (1− e−2γ)ιS.
As a consequence, the sort-and-difference required S = 233 input signatures to

satisfy [C1] and [C2] for their attack setting. Their implementation consumed nearly
1TB of RAM, and therefore attacking groups of larger order with small nonce biases
was thought to be out of reach due to its huge memory consumption.

Lattice Reduction

De Mulder et al. in [DMHMP14] proposed to use lattice reduction to carry out
the range reduction. They used the BKZ algorithm applied in lattices of dimen-
sion around 128 to mount Bleichenbacher’s attack against 384-bit ECDSA with 5-bit
nonce bias, using a total of about 4000 signatures as input.

The idea of using lattice reduction for range reduction may seem quite natural
indeed: after all, range reduction is about finding very short and sparse linear com-
binations from a large list {hi}S−1

i=0 of integers, which seems closely related to the
problem of finding very short vectors in the lattice generated by the rows of the fol-
lowing matrix: κ 0 h0

.
0 κ hS−1

for a suitable scaling constant κ. Indeed, any vector in that lattice is of the form
(κω0, . . . , κωS−1,

∑
i ωihi), and it is thus short when all the ωi’s have a small absolute

value and the linear combination
∑

i ωihi is also short.
However, two problems arise when trying to apply that approach tomore demand-

ing parameters than the ones considered by De Mulder et al., particularly when the
bias is significantly smaller.

First, the conditions above do not really capture the sparsity of the linear combi-
nations, which is of paramount importance for small biases, since the bias function
decreases exponentially with the number of non zero coefficients. To get acceptably
sparse linear combinations, one is led to start with a lattice of small dimension, con-
structed from a random subset of the hi’s of size at most equal to the desired weight
of the linear combination. This in turns makes short vectors in that lattice no longer
very short.

Second, although the coefficient ωi’s tend to be relatively small, they are not con-
strained to lie in {−1, 0, 1} as in the previous description, and as a result it is no longer
true that the bias of linear combinations is given by |Bn(K)|Ω, Ω =

∑
|ωi|, when

30

the original nonces have b-bit bias. In fact, the bias can be computed explicitly, and
it is smaller than this value in general. In particular, if one of the ωi’s is a multiple
of 2b, it is easy to check that the bias becomes exponentially small. Since for small
b it is not usually feasible to avoid the appearance of such a coefficient, the linear
combinations given by lattice reduction are typically not useful.

4.3 Bias Computation
Now let wm = mn/L, with m ∈ [0, L − 1], be an L-evenly-spaced secrete key
candidate in [0, n − 1] and Kwm

:= {s′j + h′
jwm}L−1

j=0 be a set of candidate nonces.
Assuming that L reduced signatures have been obtained by a range reduction phase,
the sampled bias is

Bn(Kwm) =
1

L

L−1∑
j=0

e2πi(s
′
j+h′

jwm)/n

=
L−1∑
t=0

 1

L

∑
{j|h′

j=t}

e2πis
′
j/n

︸ ︷︷ ︸

Zt

e2πitm/L.

Thus, by constructing the vector Z := (Z0, . . . , ZL−1), the sampled biases Bn(Kwm)
form ∈ [0, L− 1] can be computed all at once using the inverse Fast Fourier Trans-
form (iFFT). Note that (i)FFT only takes Õ(L) time and O(L) space complexities.
Finally, recalling that the peak width has now broadened to n/L via range reduction,
the algorithm picks the candidate wm that leads to the largest sampled bias, so we can
expect that wm shares its ℓ-MSB with the secret d.

4.4 Recovering Remaining Bits
As De Mulder et al. observed in [DMHMP14, §3.4], the remaining bits of the secret
can be iteratively recovered as follows. Let λ be the bit-length of the secret d. Once
ℓ-MSB of the secret is recovered, i.e. we know dHi := MSBℓ(d) but not dLo := d −
dHi2

λ−ℓ, Eq. (1) can be rewritten as follows:

ki ≡ si + hid mod n

≡ si + hi

(
dHi2

λ−ℓ + dLo
)

mod n

≡ si + hidHi2
λ−ℓ + hidLo mod n.

31

Hence defining si := si + hidHi2
λ−ℓ, Algorithm 2 can proceed with the attack to

recover the ℓ-MSB of dLo, except that this time the FFT table is constructed in the
following way: let n′ := 2λ−ℓ be the upper bound of dLo and w′

m = mn′/L be a
L-evenly-spaced candidate in [0, n′ − 1], then the sampled bias is

Bn(Kw′
m
) =

1

L

L−1∑
j=0

e2πi(s
′
j+h′

jw
′
m)/n

=
L−1∑
t=0

 1

L

∑
{j|⌊h′

jn
′/n⌋=t}

e2πis
′
j/n

︸ ︷︷ ︸

Zt

e2πitm/L.

As such, we only need to reduce the h values so that 0 ≤ h′
j < Ln/n′ ≈ L2, which

should be much faster than the first round. By repeating the above operations, we can
iteratively recover the ℓ-bit of the secret key d per each round.

32

Chapter 5

Optimization and Parallelization of
Bleichenbacher’s Attack

As we discussed in the previous chapter, the range reduction is the most costly phase
in Bleichenbacher’s attack framework and the previous approaches to it are basically
memory-bound. In this chapter, we present our approach to range reduction to over-
come this memory barrier while maintaining a practical level of efficiency in terms
of time complexity.

5.1 Our Approach: Using Schroeppel–Shamir Algo-
rithm

We begin with an intuitive discussion on the nature of the problem of finding small
and sparse linear combinations (we call it the range reduction problem for conve-
nience). Interestingly, Bleichenbacher mentioned in [Ble00] the use of Schroeppel–
Shamir algorithm, which was originally proposed as a knapsack problem solver in
[SS81], would save memory in the range reduction phase, though there has been no
concrete evaluation made on it until today. Let us develop his idea more concretely.
The range reduction problem can be indeed regarded as a variant of the knapsack
problem (as defined in Section 2.3) in a broad sense; instead of searching for the ex-
act knapsack solutions, we would like to find sufficiently many sparse patterns of
coefficients that lead to the linear combination smaller than a certain threshold value.
With this in mind, we can transform Schroeppel–Shamir’s knapsack problem solver
into a range reduction algorithm. However, applying the original Schroeppel-Shamir
algorithm introduces large priority queues (or min-heaps) to store partial linear com-
binations, which are not cache-friendly and moreover make it hard to optimize and
parallelize the algorithm in practice. Hence, our approach is specifically inspired by
the optimized version due to Howgrave-Graham and Joux, which replaced the prior-

33

ity queues with simple lists. Though their algorithm is intended for solving the knap-
sack problem, we observe that it happens to have two desirable characteristics in the
context of Bleichenbacher’s attack: modest space complexity and compatibility with
large-scale parallelization. The interested reader is invited to refer to [HGJ10, §3] to
become familiar with their approach in knapsack-specific setting. Fig. 6 and Fig. 7
depict how Schroeppel–Shamir algorithm and its variant by Howgrave-Graham–Joux
would serve as a range reduction at a high level.

In a nutshell, the range reduction transformed from Howgrave-Graham–Joux’s
algorithm works as follows:

1. Split a set of S = 2α+2 input signatures into 4 lists L(1),R(1),L(2), andR(2) of
size S/4 = 2α,

2. Create the listA(r), for each r ∈ {1, 2}, that consists of linear combinations of
two (η(r), ζ(r)) = L(r)[i] +R(r)[j] = (h

(r)
i + h

(r)
j , s

(r)
i + s

(r)
j) such that η(r)’s

top consecutive (α + 1) bits coincide with a certain value c mod 2α, and

3. Sort A(1) and A(2) and search for the short differences between elements from
them such that they are β-bit smaller than the original h values, where β is a
parameter.

That is, it first collects the linear combinations of two to make sure that the collision
happens in the top consecutive bits when taking differences, so that the resulting linear
combinations of four are expected to be much smaller with good probability. We give
the concrete procedures of our range reduction in Algorithm 3. Note that it invokes
Algorithm 8 inside as a subroutine that collects the linear combinations of two such
that their top consecutive (α + 1) bits coincide with a given value.

5.2 Analysis
We first show how to choose the appropriate parameter β so that the resulting number
of reduced signatures approximately remains S and the space usage is stable in each
round. We also evaluate the space and time complexity of Algorithm 3.

Theorem 1. Suppose β ≥ (1 + ε) · α for some ε > 0, so that in particular, 2α−β =
o(1). If h’s are uniformly distributed in the interval [0, 2λ − 1]1, then, after the first
round of Algorithm 3, the expected cardinality of sols, which we denote by L, satis-
fies L =

(
4/3 + o(1)

)
· 24α−β .

1Although the assumption here indeed holds for plain Schnorr signatures, we remark that this is
not actually the case for qDSA since it ensures hash values to be even (see [RS17, §2.4]). However, one
can trivially make them uniformly distributed over a narrower range by using the filtering technique
discussed in Section 5.5.

34

Figure 6: Overview of the Schroeppel–Shamir-based range reduction algorithm di-
rectly transformed from their original version

35

Figure 7: Overview of the Schroeppel–Shamir-based range reduction algorithm trans-
formed from Howgrave-Graham–Joux’s variant

36

Algorithm 3 Parallelizable Schroeppel–Shamir-based range reduction
Input:
1: sigs := {(hi, si)}S−1

i=0 - the set of preprocessed Schnorr-like signatures with biased nonces

λ - bit-length of h, e.g., λ = 252 for qDSA signatures

ι - number of iterations

β - number of bits to be reduced per round
Output: sols := {(h′

j , s
′
j)}

L−1
j=0 - a set of reduced signatures such that h′

j < 2λ−ιβ

2: C ← S/4 = 2α

3: τ ← λ
4: L← cardinality of sigs
5: for ρ = 1 to ι do
6: Split sigs into 4 lists: L(1),R(1),L(2),R(2) of size L′ = L/4
7: Sort L(1) and L(2) in descending order by h values
8: SortR(1) andR(2) in ascending order by h values
9: Create empty lists sols, A(1), and A(2)

10: for c = 0 to C − 1 do
11: Call Algorithm 8 on L(1),R(1), and c, push the result into a list A(1)

12: Call Algorithm 8 on L(1),R(1), and c+ C, push the result into a list A(1)

13: Call Algorithm 8 on L(2),R(2), and c, push the result into a list A(2)

14: Call Algorithm 8 on L(2),R(2), and c+ C, push the result into a list A(2)

15: ▷ A(r) is a list of (η(r), ζ(r)) = L(r)[i] +R(r)[j] = (h
(r)
i + h

(r)
j , s

(r)
i + s

(r)
j)

16: Sort A(1) and A(2) in ascending order by η values
17: i← 0
18: j ← 0
19: while Neither A(1)[i] nor A(2)[j] is at the end do
20: if η(1)[i] > η(2)[j] then
21: (h′, s′)← A(1)[i]−A(2)[j] = (η(1)[i]− η(2)[j], ζ(1)[i]− ζ(2)[j])
22: Increment j
23: else
24: (h′, s′)← A(2)[j]−A(1)[i] = (η(2)[j]− η(1)[i], ζ(2)[j]− ζ(1)[i])
25: Increment i
26: end if
27: if h′ < 2τ−β then
28: Push (h′, s′) to sols
29: end if
30: end while
31: end for
32: τ ← τ − β
33: sigs← sols
34: L← cardinality of sigs
35: end for
36: return sols

37

Proof. We first show that the expected cardinality of A(1) and A(2) is C = 2α after
the line 14. Second, we evaluate the probability that a (τ − β)-bit-bounded linear
combination of four, which consists of items in A(1) and A(2), can be found.

Before the first round, τ = λ is the bit-length upper bound of h. Since h’s are
uniformly distributed in [0, 2τ−1], the values corresponding to the top α-bits of them,
i.e. ⌊h/2τ−α⌋, are uniformly distributed in [0, C − 1].

Let η = hi + hj be an integer represented as (τ + 1)-bit string. Then the value
corresponding to its top (α + 1)-bits is ⌊η/2τ−α⌋ = η[τ+1:τ−α+1] (see Section 2.1 for
the definition of the notation). Recalling that the sum of two uniform distributions
follows a triangular distribution,

Pr
[⌊

η/2τ−α
⌋
= c
]
= Pr

[
η[τ+1:τ−α+1] = c

]
=

(c+ 1)/C2 if 0 ≤ c ≤ C − 1,

2/C − (c+ 1)/C2 if C ≤ c ≤ 2C − 1,

0 otherwise.

We can make the distribution above uniform by considering the modulo C, i.e., by
ignoring ητ+1:

Pr
[⌊

η/2τ−α
⌋
≡ c mod C

]
= Pr

[
η[τ :τ−α+1] = c

]
=

{
1/C if 0 ≤ c ≤ C − 1,

0 otherwise.

This corresponds to calling Algorithm 8 twice on c and c + C. There are L′ × L′

possible linear combinations of two between L and R. Since L′ = L/4 = S/4 = C
when ρ = 1, the cardinality of the list A is estimated as follows:

|A| = L′2 · Pr
[
η[τ :τ−α+1] = c

]
= C.

Now let us find the expected number of (τ − β)-bit-bounded linear combinations of
four. We would like to compute the following probability:

κc = Pr
[
|η(1) − η(2)| < 2τ−β

∣∣∣η(1)[τ :τ−α+1] = η
(2)
[τ :τ−α+1] = c

]
= Pr

[
η
(1)
τ+1 = η

(2)
τ+1

∣∣∣η(1)[τ :τ−α+1] = η
(2)
[τ :τ−α+1] = c

]
× Pr

[
|η(1)[τ−α:1] − η

(2)
[τ−α:1]| < 2τ−β

∣∣∣η(1)[τ :τ−α+1] = η
(2)
[τ :τ−α+1] = c

]
For notational simplicity, we will omit the condition event η(1)[τ :τ−α+1] = η

(2)
[τ :τ−α+1] = c

in the rest of the proof.
First, we compute the probability that η(1)τ+1 and η

(2)
τ+1 coincide:

Pr
[
η
(1)
τ+1 = η

(2)
τ+1

]
= Pr

[
η
(1)
τ+1 = 0

]
· Pr
[
η
(2)
τ+1 = 0

]
+ Pr

[
η
(1)
τ+1 = 1

]
· Pr
[
η
(2)
τ+1 = 1

]
=

(
c+ 1

C

)2

+

(
1− c+ 1

C

)2

.

38

Second, we compute the following probability:

Pr
[
|η(1)[τ−α:1] − η

(2)
[τ−α:1]| < 2τ−β

]
We can consider three cases for the above, which are visualized in Fig. 8.

Therefore, it can be computed as follows:

Pr
[
|η(1)[τ−α:1] − η

(2)
[τ−α:1]| < 2τ−β

]
= Pr

[
η
(1)
[τ−α:τ−β+1] = η

(2)
[τ−α:τ−β+1]

]
+

β−α∑
i=1

Pr
[
η
(1)
[τ−α:τ−β+i+1] = η

(2)
[τ−α:τ−β+i+1]

]
×(

Pr
[
η
(1)
[τ−β+i:τ−β+1] = 10…0 ∧ η

(2)
[τ−β+i:τ−β+1] = 01…1 ∧ η

(1)
[τ−β:1] < η

(2)
[τ−β:1]

]
+ Pr

[
η
(1)
[τ−β+i:τ−β+1] = 01…1 ∧ η

(2)
[τ−β+i:τ−β+1] = 10…0 ∧ η

(1)
[τ−β:1] > η

(2)
[τ−β:1]

])

=
1

2β−α
+

β−α∑
i=1

2

2β−α−i

(
1

2i
· 1
2i
· 1
2

)
=

1

2β−α

β−α∑
i=0

1

2i
=

2

2β−α
− 1

22(β−α)
.

Summing up, we obtain the probability κc:

κc =

(
2

2β−α
− 1

22(β−α)

)
·

{(
c+ 1

C

)2

+

(
1− c+ 1

C

)2
}
.

Note in particular that, since the second factor is bounded between 1/2 and 1, we
have κc = Θ

(
1/2β−α

)
independently of c.

Now there are L′4/C2 = C2 possible linear combinations betweenA(1) andA(2),
for each c ∈ [0, C − 1], we obtain an expected Lc linear combinations of four that
are (τ − β)-bit-bounded, where Lc = C2 · κc. Not all of these linear combinations
are necessarily found by Algorithm 3, however: the algorithm can miss such a linear
combination when a sum on one side collides with two consecutive sums on the other
side. Such a double collision happens with probability O(κ2

c), however, so the ex-
pected number L(found)

c of small linear combinations found by the algorithm satisfies:

L(found)
c = C2 ·

(
κc −O(κ2

c)
)
=
(
1−O(1/2β−α)

)
· Lc.

As a result, the expected cardinality L of sols is given by L =
∑

c L
(found)
c =

(
1 −

39

Figure 8: Three cases where a small linear combination of four such that h′ = |η(1)−
η(2)| < 2τ−β is found in Algorithm 3

40

O(1/2β−α)
)
·
∑

c Lc, where the sum is easy to evaluate:

C−1∑
c=0

Lc = C2

(
2

2β−α
− 1

22(β−α)

) C−1∑
c=0

{(
c+ 1

C

)2

+

(
1− c+ 1

C

)2
}

= C2

(
2

2β−α
− 1

22(β−α)

)(
2

3
C +

1

3C

)
=

4

3
24α−β +

2

3

(
22α−β − 25α−2β − 23α−2β−1

)
.

As a result, we obtain L =
(
4/3 + o(1)

)
· 24α−β as required.

Now we can directly derive the following claim.

Corollary 2. After the first round of Algorithm 3, L ≈ S if β = β0 := 3α− log 3.

Proof. Indeed, with that choice of β, we have:

L =
(4
3
+o(1)

)
·24α−β0 =

(4
3
+o(1)

)
·2α+log 3 =

(
4+o(1)

)
·2α =

(
1+o(1)

)
·S.

After the first round, the above result does not hold strictly because h’s are not
perfectly uniform anymore. However, we empirically confirmed that approximately
S reduced signatures can be constantly obtained in practice when β is sufficiently
close to β0. We first generated 217 Schnorr signature pairs (h, s) over a group of 252-
bit order, and then made Algorithm 3 reduce them for 5 times, i.e., the parameters
were as follows: S = 217, λ = 252, and ι = 5. Since 1.58 < log 3 < 1.59, we
conducted the reduction experiments with β = 3α− 1.58 and β = 3α− 1.59 respec-
tively, and measured the amount of reduced signatures after each iteration. Table 1
gives the experimental results. As a consequence, we actually managed to get more
than S signatures after every round when β = 3α− 1.59, which is slightly below β0;
on the other hand, the number of reduced signatures L decreased per iteration when
β = 3α− 1.58 > β0. These results show that choosing β such that β ≤ β0 is indeed
sufficient to maintain L ≈ S even after the first round (if the choice of β ends up with
more than S reduced signatures, then we can simply interrupt the for loop as soon as
the cardinality of sols reaches S, which of course makes the range reduction end
faster). In what follows, we will assume that β is equal to or slightly smaller than β0

to make the space usage stable.

Lemma 2. The space complexity of Algorithm 3 is O(S) if β = β0.

Proof. The space usage of Algorithm 3 is bounded by the size of sigs,A(1),A(2)

and sols, all of which have cardinality O(S) if β = β0.

Lemma 3. The time complexity of Algorithm 3 is Õ(S2) if β = β0.

41

Table 1: Experimental results on the number of reduced signatures L after ρ rounds
of the range reduction by Algorithm 3, when α = 15 and S = 2α+2 = 131072

1 2 3 4 5

β = 3α− 1.59 131343 132807 138622 160763 180003
β = 3α− 1.58 130447 128226 120601 93524 34272

Table 2: Complexities and the number of reduced bits

Algorithm Time Space Bits reduced

Ours (1 round) Õ(S2) O(S) 3α− log 3
Sort-and-difference (2 rounds) Õ(S) O(S) 2(α + 2− γ)

Proof. We assume L ≈ S from Corollary 2. At the line 7 and 8, it takes time
O(S logS) to sort the lists with a standard sorting algorithm such as quick sort. Col-
lecting the linear combinations of two by Algorithm 8 takes O(S) from the line 11
to 14. Since A(1) and A(2) have the cardinality of L′2/C = S/4, sorting at the
line 16 takes O(S logS) and going through them in the while loop requires O(S)

steps for each c. We finally obtain Õ(S2) by taking the summation from c = 0 to
c = C − 1.

Table 2 gives the performance comparison between Algorithm 3 (with β = β0)
and the sort-and-difference assuming that both algorithms take the same input size S.
Note that we evaluated 2 rounds of sort-and-difference for a fair comparison, since
each iteration of it only constructs linear combinations of two, while our Schroeppel–
Shamir-based algorithm constructs the linear combinations of four per round. Our
approach can reduce more bits than the sort-and-difference per each equivalent round
using the same amount of inputs; in other words, in order to reduce the same amount
of bits, it takes less space complexity, and therefore requires fewer input signatures.

5.3 Parallelization
On the negative side, our algorithm takes more time complexity than the sort-and-
difference. However, the large-scale parallelization of Algorithm 3 can compensate
for it in practice. A careful reader may note that the procedure inside the for loop
beginning at the line 10, which we call a job denoted by Jc with c ∈ [0, C − 1], is
completely self-contained; in fact, a distributed-memory parallel computing allows
us to implement the algorithm within a simple master-worker paradigm. That is,
the master node simply broadcasts the sorted input data (L(1),R(1),L(2), R(2)) and

42

distributes the jobs {J0, . . . , JC−1} evenly to worker nodes, so the workers can focus
on their own small set of jobs independently, i.e., without communicating with other
workers. In Chapter 6, we will revisit the parallelization setting and describe concrete
implementation techniques.

5.4 Lower Bounds for the Amount of Signatures
As we observed in Chapter 4, a range reduction algorithm needs to output small and
sparse linear combinations as specified in [C1] and [C2] of Bleichenbacher’s attack
framework (Algorithm 2). Suppose h’s are λ-bit integers, nonces are b-bit biased
and the number of iterations is fixed to ι. Then, using (λ, b, ι) as parameters, we can
derive the lower bound for the number of input signatures for our range reduction
algorithm to satisfy those conditions.

Theorem 2. Under the heuristic assumption that the h’s in sigs behave like uni-
formly random values before ι-th round, Algorithm 3 satisfies [C1] and [C2] after
the ι-th round if β = β0 and S = 2α+2 > 2αSS+2, where

αSS = max
{
λ− 2 + ι log 3

1 + 3ι
, 2 · 4ι

(
logπ − b− log sin(π/2b)

)}
.

Proof. From Corollary 2, we assume L = S. Since after ι rounds of range reduction,
we get linear combinations such that h′ < 2λ−ιβ0 . Hence, to satisfy [C1],

2λ−ιβ0 ≤ S ⇐⇒ λ− ιβ0 ≤ logS = α + 2

⇐⇒ α ≥ λ− 2 + ι log 3
1 + 3ι

.

Algorithm 3 constructs linear combinations of four per each round, i.e., it creates
h′ = |η(1) − η(2)| = |h(1)

i1
+ h

(1)
j1
− h

(2)
i2
− h

(2)
j2
| and its corresponding nonce becomes

k′ = |k(1)
i1

+ k
(1)
j1
− k

(2)
i2
− k

(2)
j2
|.

Recalling the discussion in Section 4.2, we can approximate the resulting bias
as follows: let X,Y ,Z and W be random variables (which correspond to nonces
k
(1)
i1
, k

(1)
j1
, k

(2)
i2

and k(2)
j2
, respectively) uniformly distributed on the interval

[
0,
⌊
(n− 1)/2b

⌋]
,

and let us assume that they are independent. Then applying (b) and (c) of Lemma 1,
Bn(X) = Bn(Y) = Bn(Z) = Bn(W) and

Bn(X + Y −Z −W) = Bn(X + Y) ·Bn(Z +W)

= Bn(X) ·Bn(Y) ·Bn(Z) ·Bn(W)

= |Bn(X)|4.

43

This means that each iteration approximately reduces the bias by raising it to the
fourth power2. Therefore, the condition [C2] can be rewritten as follows:

|Bn(X)|4ι > 1/
√
S︸ ︷︷ ︸

size of noise

.

Applying Corollary 1, we obtain(
2b

π
sin(π/2b)

)4ι

> 1/
√
S = 1/

√
2α+2

⇐⇒ 4ι
(
b− logπ + log sin(π/2b)

)
+

1

2
(α + 2) > 1

⇐⇒ α > 2 · 4ι
(
logπ − b− log sin(π/2b)

)
.

Putting all together, we obtain the lower bound αSS.

5.5 Data-(Time, Space) Trade-off
In practice, adversaries who can perform the fault attack are allowed to generate as
many signatures as they want and filter out ones with relatively large h. That is, let f
be the number of bits to be filtered, then one can heuristically get S signatures such
that h < 2λ−f by generating 2f · S faulty signatures, assuming that h is uniformly
distributed in [0, 2λ − 1]. With this setting, the condition [C1] is relaxed as follows:

2λ−f−ιβ0 ≤ S ⇐⇒ λ− f − ιβ0 ≤ logS = α + 2

⇐⇒ α ≥ λ− f − 2 + ι log 3
1 + 3ι

.

This clearly improves the lower bound obtained in Theorem 2 in exchange for spend-
ing more time on the initial signature generation. Let α′

SS be the new lower bound,
then

α′
SS = max

{
λ− f − 2 + ι log 3

1 + 3ι
, 2 · 4ι

(
logπ − b− log sin(π/2b)

)}
.

Now we only need to pass Bleichenbacher’s attack at least S ′ := 2α
′
SS+2 signa-

tures. Let TGen be the time spent on signature generation, and TAtk and SAtk be the

2This is where we use the heuristic assumption. Note that it holds in practice as confirmed in
[AFG+14, §3.2] for the sort-and-difference algorithm.

44

time and space required for Bleichenbacher’s attack with our range reduction (i.e.,
Algorithms 2 and 3), respectively. Then, we obtain the following estimates for each:

TGen = O(2f · S ′),

TAtk = Õ(S ′2),

SAtk = O(S ′).

Thus, the parameter f gives us the flexibility and it can be determined depending on
the precise context; for example, if we are allowed to generate significantly many
signatures, but can only utilize relatively limited computational resources, then f
should be increased so as to obtain the appropriate lower bound α′

SS, and vice versa.
We make use of this technique to attack 2-bit bias in Section 6.1.

5.6 Performance Comparison
We apply the settings of our attack — the qDSA on Curve25519 with its 2- or 3-LSB
of the nonces known via fault attacks — to the bound obtained in Theorem 2 in order
to give concrete performance estimates of our range reduction algorithm. We also
found the optimal number of iterations ι for both cases such that αSS is minimized.
Table 3 summarizes the result. In addition, we give complete performance estimates
for other group sizes (chosen based on standardized curve parameters) and nonce bi-
ases in Appendix C. They include the comparison with the sort-and-difference used
by [AFG+14] and with a lattice attack in combination with the SVP algorithm by
[BDGL16]. Note that the estimates for the sort-and-difference are too optimistic be-
cause they are based on the assumption that the ratio (1− e−2γ)ι holds even after the
first iteration; indeed, unlike our algorithm, it is not true in practice as we reviewed
in Chapter 4. We actually encountered such a situation and acquired less resulting
signatures than theoretically estimated (see Section 6.2).

45

Table 3: Estimates for the minimum required number of signatures and the optimal
complexities of reduction algorithms and a lattice attack when λ = 252. The esti-
mates omit the subexponential factors; note however, that those factors are the same
for sort-and-difference and our algorithm, and are worse for a lattice attack.

Algorithm ι S Time Space

b = 2
Ours 3 227.5 255.0 227.5

Sort-and-difference (γ = 1) 6 237.0 237.0 237.0

Lattice attack – 27.2 258.8 258.8

b = 3
Ours 4 221.7 243.4 221.7

Sort-and-difference (γ = 1) 8 229.1 229.1 229.1

Lattice attack – 26.5 243.3 243.3

46

Chapter 6

Implementation Results

We implemented the Bleichenbacher’s attack incorporating the reduction technique
described in Algorithm 3. In this chapter, we summarize the implementation details
and our experimental results. The source code of the programs used in this chapter
is publicly available [TT18].

Tools. We artificially (i.e., using the parallel computing facilities described be-
low) generated faulty qDSA signatures by modifying the C reference implementa-
tion [Ren17a]. The attack program was written in C++ and the multiprecision inte-
ger arithmetic was mostly handled by GMP library [Gt16], except that the reduction
phase only made use of the built-in C integer type uint64_t for further optimiza-
tion; in fact, we do not need to handle the full-fledged big integers there since our
reduction algorithm only requires the evaluation of the top β-bit and the following
few bits, as Fig. 8 depicts. The bias was computed with FFTW [FJ05]. The large-
scale parallelization was achieved with the combination of Open MPI [GFB+04] and
OpenMP [Ope08].

Hybrid shared/distributed-memory parallelization. We describe how the large-
scale parallelization of Algorithm 3 was achieved in practice. We implemented the
attack using hybrid shared-memory and distributed-memory parallel programming
technique. The former was handled by OpenMP and the latter was by MPI.

We utilized the following two parallel computing facilities during the experi-
ments:

1. a dual Xeon E5-2697 v3-based workstation (2 CPUs × 14 cores/CPU × 2
threads/core), and

2. virtual machine instances on a distributed cluster (16 virtual machine nodes ×
16 vCPU/node).

47

In particular, the much larger second facility is a distributed-memory system that
consists of a set of independent nodes, each of which has its own shared-memory
multiprocessing environment. (And although the first system is a single workstation
with a single memory space, MPI also made it appear as though it consisted of two
separate nodes running distinct multithreaded processes).

As a parallel programming paradigm, we employed a simplemaster-worker scheme
(see, e.g., [HW11, Chapter 5] for details). Let t be the number of available shared-
memory threads within a node and N be the number of distributed-memory nodes,
where N is a power of 2 for simplicity. Moreover, we assume that each node is
assigned a unique identifier I ∈ [0, N − 1]. Then our parallelization strategy is sum-
marized as follows:

1. Make the master process load and sort the input data.

2. Map one MPI worker process per node.

3. Broadcast the data, partition the set of jobs {J0, . . . , JC−1} into N subsets
J0, . . . ,JN−1, where JI := {JN ·i+I}C/N−1

i=0 , and assign node I a subset JI
1.

4. Make each worker spawn a team of tOpenMP threads and process the assigned
jobs.

5. Gather the results (i.e., subsets of sols) into the master.

To achieve these, calling a few basic MPI collective communication routines —
MPI_Bcast, MPI_Gather, and MPI_GatherV—is sufficient. Each routinewas called
only once per round before/after the for loop and it only took a few minutes to broad-
cast and gather the data in both experiments below. Considering the time spent on
the whole range reduction operations, our implementation introduces negligibly low
communication overhead due to the parallelization.

Scalability. Although our range reduction algorithm is highly space-efficient, multi-
threading in a shared-memory environment requires extra space for storing the lists
A(1) and A(2), whose expected cardinalities are C = S/4, for each thread (see the
proof of Theorem 1). On the other hand, the amount of distributed-memory nodesN
divides the cardinality of sols stored in each node. Therefore, the space needed for
each node can be roughly estimated as follows:

S︸︷︷︸
L(1),R(1),L(2),R(2)

+ 2tC︸︷︷︸
A(1),A(2)

+ S/N.︸ ︷︷ ︸
(partial) sols

1This job scheduling is necessary for equalizing the cardinalities of partial sols due to the non-
uniform number of small linear combinations found in each job (see L(found)

c in Theorem 1).

48

Recalling the fact that our implementation broadcasts and gathers the data be-
tween nodes only once, it is advisable to scale distributed-memory nodes instead of
shared-memory threads to save the memory space. In the era of cloud computing,
it is safe to say that preparing many distributed nodes with moderate memory ca-
pacity is not very difficult for well-funded adversaries. Hence, our range reduction
algorithm is highly scalable in practice. In the following section, we will present
the actual memory usage in virtual distributed-memory nodes on the cluster machine
(i.e., N=16 and t=16).

6.1 Attack against 2-bit Bias
We first present our main result: the key recovery attack against qDSA instantiated
with Curve25519 using 2-bit biased nonces. We artificially generated faulty qDSA
signatures based on the fault attack described in Section 3.2; in addition, we prepro-
cessed them to make 2-MSB of nonces biased as described in Section 3.3. Due to
the computational resources available to us, we had to filter the signature pairs by h
values to trade the time and space complexity for the data complexity, following the
discussion in Section 5.5. More concretely, setting f = 19, we initially generated
nearly 245 preprocessed signatures and only kept ones with h < 2252−19, so that we
obtained S = 226 signatures to be processed by Bleichenbacher’s attack. The whole
signature generation phase took about 5 days using the cluster. Accordingly, we only
had to reduce 252 − 19 − 26 = 207-bit in total during the range reduction phase,
which allowed us to set the parameter β = 69 slightly below β0 = 3× 24− log 3.

The recovery of the first MSBs was conducted with the virtual machine instances;
the range reduction jobs were distributed to 16 distributed-memoryMPI processes, all
of which spawned 16 shared-memory OpenMP threads. The measured experimental
results are summarized in Table 4. We observed that the detected bias peak after 3
rounds of reduction matches the theoretical estimate, i.e. |Bn(K)|43 ≈ 0.0012 from
Corollary 1. The detected sampled biases are plotted in Fig. 9. (It only displays
the selected noise points for simplicity; we actually computed the sampled biases at
L-evenly-spaced points in n, where L ≈ 226, and detected the only one peak point
that showed the significant bias value.) The FFT table preparation and sampled bias
computation finished within a few minutes.

Though the total wall clock time was over two weeks, we expect much better
performance on a dedicated cluster. Due to the uneven resource allocation of virtual
instances, which are used by many people and therefore out of our control, some
nodes were significantly slower than others, and the fastest node completed their jobs
within only 7 days, which is equivalent to 4.8 CPU-years in total. As a matter of fact,
we did not observe such a difference when we parallelized the range reduction on the
Xeon workstation. Thus, we stress that this synchronization overhead is not because

49

of our range reduction algorithm, but rather a specific problem in virtual machines.
After the 26-MSB of the secret key was successfully recovered, we iteratively

recovered the following bits as in Section 4.4, using the 2 nodes (i.e., 56 threads in
total) of the Xeon workstation for the range reduction. Consequently, the whole pro-
cess below took less than 6 hours in total. We took a small security margin and only
assumed that the 24-MSB was recovered in the previous phase, following the advice
by [AFG+14] and [DMHMP14]. We used Algorithm 3 until we recovered the 189-
MSB and lastly used the sort-and-difference to recover the 216-MSB; at this stage,
we do not need to reduce many bits anymore, and therefore the sort-and-difference
is more convenient since it only constructs linear combinations of two and does not
diminish the sampled bias peak very much, which allows us to detect the peak area
more precisely. Finally, we directly computed the bias without range reduction and
recovered 241-MSB, with which a simple exhaustive search could be easily done to
obtain the remaining unknown bits.

Performance estimate of better-equipped adversaries. Since we filtered signa-
tures by h’s top 19 bits and only used S = 226 as input, what we have computed
corresponds to the timings TGen of 245 and TAtk of 252, and the space SAtk of 226.
Thus, we can infer that a better-equipped adversary, say one with access to 32 cores
× 32 nodes with 96GB RAM for each, could perform a key recovery within about
3 months even without filtering at all, from the estimate in Table 3. This should be
a more favorable attack setting in a situation where the adversary is only allowed to
generate fewer faulty signatures.

6.2 Attack against 3-bit Bias
Next, we describe the experimental results of the attack against qDSA signatures with
3-bit biased nonces. We artificially generated 223 faulty signatures (without filtering)
based on the attack in Section 3.1 and preprocessed them to make the 3-MSB of
nonces biased as described in Section 3.3. The program was executed in the Xeon
workstation andwe parallelized the range reduction with 28 shared-memoryOpenMP
threads × 2 MPI nodes.

The measured experimental results are given in Table 5. We also performed the
attack using the sort-and-difference, which is abbreviated as S&D. The attack was
completed much faster than the case of 2-bit bias since now we are allowed to iterate
the range reduction 4 times, and therefore the amount of bits reduced per round is
much less. Moreover, the CPU-time was almost 10 days and the memory consump-
tion was considerably lower then that of the sort-and-difference. This result implies
that the attack against 3-bit bias would even be feasible using a small laptop for daily

50

use. We omit the recovery of the following bits since the procedure is the same as the
previous experiment on 2-bit bias.

It also turned out that the sort-and-difference (with γ = 1) is even exploitable
against 3-bit bias and the CPU-time was a lot shorter than our algorithm, which is
as expected. In a situation where an adversary is allowed to generate more than 1
billion 3-bit biased signatures, the use of sort-and-difference should be a better option.
However, it should be pointed out that the resulting number of signatures after 8
rounds was only 225.8, which is significantly less than the estimated amount, i.e.,
(1 − e−2γ)8 · 230 ≈ 228.3. This instability could be an obstacle when attacking the
signatures over a larger group, since it demands higher γ or more input signatures
than the theoretical bound, both of which would lead to more memory usage than
expected.

51

Table 4: Implementation results of the attack against qDSA signatures with nonces
of 2-bit bias

Wall clock time CPU-time Memory ι S Peak #Recovered MSB

400.7 hours 11.7 years 15GB 3 226 0.0012 26-bit

Table 5: Implementation results of the attack against qDSA signatures with nonces
of 3-bit bias

Wall clock time CPU-time Memory ι S Peak #Recovered MSB

Ours 4.25 hours 238 hours 2.8GB 4 223 0.0016 23-bit
S&D 0.75 hours 0.75 hours 128GB 8 230 0.0014 21-bit

1 2 3 4 5 6 7
·107

0.0005

0.001

0.0015

w

|Bn (K
′
w) |

Figure 9: Detected sampled biases after reducing the signatures with 2-bit biased
nonces 3 times

52

Chapter 7

Concluding Remarks

In this thesis, we have analyzed attacks against nonces in Schnorr-like signatures,
especially focusing on the optimization of Bleichenbacher’s statistical approach and
concrete physical attacks to partially reveal nonces.

In Chapter 3, we described a concrete situation where adversary could learn par-
tial information of nonces in Schnorr-like signatures, by proposing two novel fault
attacks against qDSA’s base point. The argument supported by glitch attack exper-
iments on a microcontroller gave insights on what should be done to implement the
scheme securely. We hope that this work can pave the way towards the physically
secure use of qDSA in real-world embedded systems, such as IoT devices. Moreover,
although we have only identified qDSA over Curve25519 as a specific target, the at-
tacks should be of concern when implementing any Schnorr-like signature scheme
that depends on the x-only arithmetic of the Montgomery ladder; therefore, the dis-
cussion of the proposed countermeasures, especially cofactor killing, should provide
practical advice to all designers of Montgomery curve-based signatures in the future.

In Chapter 4, we provided a comprehensive description of Bleichenbacher’s so-
lution to the hidden number problem. Since there have been only two formal papers
on Bleichenbacher’s method (i.e., [DMHMP14] and [AFG+14]), its study has not
been firmly established yet. As such, we believe that this material will be a useful
reference to the cryptanalytic community for further studying the technique.

In Chapter 5, we designed a highly-parallelizable and space-efficient range reduc-
tion algorithm for the Bleichenbacher’s nonce attack, based on Howgrave-Graham
and Joux’s variant of Schroeppel–Shamir algorithm. The detailed analysis of our ap-
proach showed a good balance between time and space complexity, which makes the
attack achievable in practice against Schnorr-like schemes with groups of larger order
and smaller nonce biases than previously thought tractable. As an example situation
where our attack has advantage, Chapter 6 demonstrated the first complete experi-
mental results on the full key recovery of 252-bit curve with 2-bit and 3-bit biased
nonces, and we thus have set new records in the implementation of Bleichenbacher’s

53

attack. Although we mostly focused on these parameter settings due to the compati-
bility with the proposed physical attacks, one can think of many other scenarios where
our range reduction can be useful for an adversary; for example, we can infer from
Table 9 in Appendix C that an attack on 192-bit group and 1-bit bias may be feasible
for well-funded adversaries considering the fact that we were already able to realize
an attack of the 252 time and 226 space complexity. If such a nonce bias is discovered
in the future, Bleichenbacher’s attack with our approach will be of practical concern.

Future work. Although the range reduction algorithm proposed in Chapter 5 is
based on one specific knapsack solver, an open question remains: is this approach
really optimal? The range reduction problem amounts to finding many small and
sparse linear combinations among a set of integers. It relates directly to the so-called
k-SUM problem (given k lists of integers, find an element in each list such that the k
elements together sum to zero), for which numerous techniques and trade-offs have
been proposed (e.g. [LWWW16]); in particular, the Schroeppel–Shamir knapsack
algorithm can be seen as a possible solution for 4-SUM. The parameter regime for k-
SUM that occurs in Bleichenbacher’s algorithm differs significantly frommost of the
regimes considered in the literature, however, and it is unclear what the best tradeoff
should be for a given “budget” in terms of computational resources, memory capacity
and input data. By analyzing this problem in depth, we hope to be able to propose an
evenmore space-efficient range reduction algorithm, or a precise estimate for the lim-
itation of this attack framework. We believe that either outcome would be a beneficial
contribution to our understanding of the threat posed by Bleichenbacher’s attack.

54

Bibliography

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoit Gérard, Jean-
Gabriel Kammerer, Mehdi Tibouchi, and Jean-Christophe Zapalow-
icz. GLV/GLS decomposition, power analysis, and attacks on ECDSA
signatures with single-bit nonce bias. In T. Iwata and P. Sarkar,
editors, ASIACRYPT 2014, volume 8873 of LNCS, pages 262–281.
Springer, 2014. 4, 6, 28, 29, 44, 45, 50, 53

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall,
and Claire Whelan. The sorcerer’s apprentice guide to fault attacks.
Proceedings of the IEEE, 94(2):370–382, 2006. 2, 7

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New
directions in nearest neighbor searching with applications to lattice
sieving. In Robert Krauthgamer, editor, SODA, pages 10–24. SIAM,
2016. 45

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the im-
portance of checking cryptographic protocols for faults (extended ab-
stract). In EUROCRYPT ’97, volume 1233 of LNCS, pages 37–51.
Springer, 1997. 7

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. High-speed high-security signatures. Journal of Crypto-
graphic Engineering, 2(2):77–89, 2012. 4

[Ber06] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, ed-
itors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer,
2006. 4, 8, 13

[BFMT16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, andMehdi
Tibouchi. Side-channel analysis of weierstrass and koblitz curve
ECDSA on android smartphones. volume 9610 of LNCS, pages 236–
252. Springer, 2016. 3, 7

55

[BL] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe
curves for elliptic-curve cryptography. http://safecurves.cr.
yp.to. 13

[BL17] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the
Montgomery ladder. In Joppe W. Bos and Arjen K. Lenstra, edi-
tors, Topics in Computational Number Theory Inspired by Peter L.
Montgomery, pages 82–115. Cambridge University Press, 2017. 9

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in DL sig-
nature schemes. Presentation at IEEE P1363 working group meeting,
2000. Available from http://grouper.ieee.org/groups/1363/
Research/contributions/Ble2000.tif. 3, 6, 25, 33, 69

[Ble05] Daniel Bleichenbacher. Experiments with DSA. Rump session at
CRYPTO 2005, 2005. Available from https://www.iacr.org/
conferences/crypto2005/r/3.pdf. 6, 69

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault at-
tacks on elliptic curve cryptosystems. In CRYPTO 2000, volume 1880
of LNCS, pages 131–146. Springer, 2000. 13

[Bun18] Bundesamt für Sicherheit in der Informationstechnik. BSI TR-03111
Elliptic Curve Cryptography, 2018. Version 2.10. 62

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing
the most significant bits of secret keys in Diffie–Hellman and related
schemes. In Neal Koblitz, editor,CRYPTO ’96, volume 1109 of LNCS,
pages 129–142. Springer, 1996. 7, 23

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
”Ooh aah... just a little bit” : A small amount of side channel can go
a long way. In CHES 2014, volume 8731 of LNCS, pages 75–92.
Springer, 2014. 3, 7

[CS17] Craig Costello and Benjamin Smith. Montgomery curves and their
arithmetic: The case of large characteristic fields. Cryptology ePrint
Archive, Report 2017/212, 2017. http://eprint.iacr.org/2017/
212. 9

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Trans. Information Theory, 22(6):644–654, 1976. 1, 4

56

http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
http://grouper.ieee.org/groups/1363/Research/contributions/Ble2000.tif
http://grouper.ieee.org/groups/1363/Research/contributions/Ble2000.tif
https://www.iacr.org/conferences/crypto2005/r/3.pdf
https://www.iacr.org/conferences/crypto2005/r/3.pdf
http://eprint.iacr.org/2017/212
http://eprint.iacr.org/2017/212

[DMHMP14] Elke De Mulder, Michael Hutter, Mark E Marson, and Peter Pearson.
Using Bleichenbacher’s solution to the hidden number problem to at-
tack nonce leaks in 384-bit ECDSA: extended version. Journal of
Cryptographic Engineering, 4(1):33–45, 2014. 4, 6, 25, 28, 30, 31,
50, 53

[EMV11] EMV Co. EMV Integrated Circuit Card Specifications for Payment
Systems, Book 2 – Security and Key Management, 2011. Version 4.3.
1

[FFAL17] Armando Faz-Hernández, Hayato Fujii, Diego F. Aranha, and Julio
López. A secure and efficient implementation of the quotient digital
signature algorithm (qdsa). In Sk Subidh Ali, Jean-Luc Danger, and
Thomas Eisenbarth, editors, SPACE 2017, volume 10662 of LNCS,
pages 170–189. Springer, 2017. 5

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special
issue on “Program Generation, Optimization, and Platform Adapta-
tion”. 47

[FLRV08] Pierre-Alain Fouque, Reynald Lercier, Denis Réal, and Frédéric
Valette. Fault attack on elliptic curve Montgomery ladder imple-
mentation. In Luca Breveglieri, Shay Gueron, Israel Koren, David
Naccache, and Jean-Pierre Seifert, editors, FDTC 2008, pages 92–98.
IEEE, 2008. 7, 13

[Gal13] Patrick Gallagher. Digital signature standard (DSS). NIST, 2013.
FIPS PUB 186–4. 2, 3, 63

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kam-
badur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J.
Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI implementa-
tion. In Proceedings, 11th European PVM/MPI Users’ Group Meet-
ing, pages 97–104, 2004. 47

[Gt16] Torbjörn Granlund and the GMP development team. GMP: The GNU
Multiple Precision Arithmetic Library Version 6.1.2, 2016. http://
gmplib.org/. 47

57

http://gmplib.org/
http://gmplib.org/

[GVY17] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be
with you: A microarchitectural side channel attack on several real-
world applications of curve25519. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, CCS 2017, pages
845–858. ACM, 2017. 7

[HGJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms
for hard knapsacks. In Henri Gilbert, editor, EUROCRYPT 2010, vol-
ume 6110 of LNCS, pages 235–256. Springer, 2010. 5, 34

[HGS01] Nick A. Howgrave-Graham and Nigel P. Smart. Lattice attacks on dig-
ital signature schemes. Designs, Codes and Cryptography, 23(3):283–
290, 2001. 3, 7, 13

[HW11] Georg Hager and Gerhard Wellein. Introduction to High Performance
Computing for Scientists and Engineers. Chapman and Hall / CRC
computational science series. CRC Press, 2011. 48

[JMV01] Don Johnson, Alfred Menezes, and Scott A. Vanstone. The elliptic
curve digital signature algorithm (ECDSA). International Journal of
Information Security, 1(1):36–63, 2001. 63

[KS00] David R. Kohel and Igor E. Shparlinski. On exponential sums and
group generators for elliptic curves over finite fields. In ANTS-IV,
pages 395–404, 2000. 17

[LCL13] Mingjie Liu, Jiazhe Chen, and Hexin Li. Partially known nonces and
fault injection attacks on SM2 signature algorithm. In Inscrypt 2013,
volume 8567 of LNCS, pages 343–358. Springer, 2013. 3, 7

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic curves for
security. IRTF, 2016. RFC 7748. 4

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration:
An update. In CT-RSA 2013, volume 7779 of LNCS, pages 293–309.
Springer, 2013. 3, 7

[LWWW16] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and
R. Ryan Williams. Deterministic time-space trade-offs for k-SUM. In
ICALP 2016, pages 58:1–58:14, 2016. 54

[Mac] Kenneth MacKay. micro-ecc: a small and fast implementation of
ECDSA and ECDH for 8-bit, 32-bit, and 64-bit processors. https:
//github.com/kmackay/micro-ecc. 14

58

https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve meth-
ods of factorization. Mathematics of Computation, 48(177):243–264,
1987. 4, 8

[NNTW05] David Naccache, Phong Q. Nguyen, Michael Tunstall, and Claire
Whelan. Experimenting with faults, lattices and the DSA. In Serge
Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 16–28.
Springer, 2005. 3, 7

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. Journal of Cryptol-
ogy, 15(3), 2002. 3, 6, 7, 69

[NS03] Phong Q Nguyen and Igor E Shparlinski. The insecurity of the el-
liptic curve digital signature algorithm with partially known nonces.
Designs, Codes and Cryptography, 30(2):201–217, 2003. 3, 7

[NT12] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-based fault attacks on
signatures. In Marc Joye andMichael Tunstall, editors, Fault Analysis
in Cryptography, Information Security and Cryptography, pages 201–
220. Springer, 2012. 3

[OC14] ColinO’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-
source platform for hardware embedded security research. In Em-
manuel Prouff, editor, COSADE, volume 8622 of LNCS, pages 243–
260. Springer, 2014. 12, 17, 20

[Ope08] OpenMP Architecture Review Board. OpenMP application pro-
gram interface version 3.0, May 2008. http://www.openmp.org/
mp-documents/spec30.pdf. 47

[Ren17a] Joost Renes. qDSA reference implementation for C. https://www.
cs.ru.nl/~jrenes/software/cref-g1.tar.gz, 2017. 47

[Ren17b] Joost Renes. qDSA reference implementation for the AVR
ATmega. https://www.cs.ru.nl/~jrenes/software/avr-g1.
tar.gz, 2017. 20

[RS17] Joost Renes and Benjamin Smith. qDSA: Small and secure digital
signatures with curve-based Diffie-Hellman key pairs. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, volume 10625
of LNCS, pages 273–302. Springer, 2017. 4, 8, 13, 14, 17, 34

59

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://www.cs.ru.nl/~jrenes/software/cref-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/cref-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/avr-g1.tar.gz
https://www.cs.ru.nl/~jrenes/software/avr-g1.tar.gz

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction
attacks. In CHES 2002, volume 2523 of LNCS, pages 2–12. Springer,
2002. 14

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991. 2, 3, 62

[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4)
algorithm for certain NP-complete problems. SIAM Journal on Com-
puting, 10(3):456–464, 1981. 5, 33

[TT18] Akira Takahashi and Mehdi Tibouchi. New bleichenbacher records:
Parallel implementation. https://github.com/security-kouza/
new-bleichenbacher-records, 2018. Source code of this attack.
47

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New
Bleichenbacher records: Fault attacks on qDSA signatures. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
2018(3):xx–xx, 2018. to appear. 5

[Vau01] Serge Vaudenay. Evaluation report on DSA. http://www.
cryptrec.go.jp/exreport/cryptrec-ex-1002-2001.pdf,
2001. IPA Work Delivery 1002. 69

60

https://github.com/security-kouza/new-bleichenbacher-records
https://github.com/security-kouza/new-bleichenbacher-records
http://www.cryptrec.go.jp/exreport/cryptrec-ex-1002-2001.pdf
http://www.cryptrec.go.jp/exreport/cryptrec-ex-1002-2001.pdf

Appendix A

Schnorr-like Signature Schemes

We introduce other Schnorr-like signature schemes whose nonces could be subject to
Bleichenbacher’s attack. Here we define the public parameters pp:

pp := (G, n, g,H)

where

• n is a large prime

• G is a cyclic (multiplicative) group of prime order n

• g ∈ G is a generator of G

• H : {0, 1}∗ → Z/nZ is a cryptographic hash function

In an elliptic curve-based representation, we use the following domain parametersD
instead of pp:

D := (Fp, A,B, P, n,H)

where

• p is a large prime

• A,B ∈ Fp are coefficients that determine an elliptic curve EA,B/Fp

• P ∈ EA,B(Fp) is a base point of prime order n

• H : {0, 1}∗ → Z/nZ is a cryptographic hash function

In addition, k←$S denotes the operation of sampling an element k uniformly and
at random from a set S.

61

A.1 Schnorr Signature

Algorithm 4 Schnorr signature generation [Sch91]
Input: d ∈ Z/nZ: secret key, y = gd: public key, M ∈ {0, 1}∗: message to be

signed, pp: public parameters
Output: a valid signature (h, s)
1: k←$Z/nZ
2: r ← gk

3: h← H(r||M)
4: s← k + hd mod n
5: return (h, s)

Algorithm 5 EC Schnorr signature generation (standardized as ECSDSA [Bun18])
Input: d ∈ Z/nZ: secret key, Q = [d]P : public key, M ∈ {0, 1}∗: message to be

signed, D: domain parameters
Output: a valid signature (h, s)
1: k←$Z/nZ
2: (x, y)← [k]P
3: h← H(x||y||M)
4: s← k + hd mod n
5: return (h, s)

Clearly, the following congruence relation holds in both schemes if h′ := −h,
which indicates that they satisfy the condition for Schnorr-like signature we defined
in Section 1.2:

k ≡ s+ h′d mod n

62

A.2 Digital Signature Algorithm

Algorithm 6 DSA signature generation [Gal13]
Input: d ∈ Z/nZ: secret key, y = gd: public key, M ∈ {0, 1}∗: message to be

signed, pp: public parameters
Output: a valid signature (h, s)
1: k←$Z/nZ
2: r ← gk mod n
3: h← H(M)
4: s← k−1(h+ rd) mod n
5: return (r, s)

Algorithm 7 ECDSA signature generation [JMV01]
Input: d ∈ Z/nZ: secret key, Q = [d]P : public key, M ∈ {0, 1}∗: message to be

signed, D: domain parameters
Output: a valid signature (r, s)
1: k←$Z/nZ
2: (x, y)← [k]P
3: r ← x mod n
4: h← H(M)
5: s← k−1(h+ rd) mod n
6: return (r, s)

The following congruence relation holds in both schemes:

k ≡ hs−1 + rs−1d mod n

Now define the following two elements:

s′ = hs−1

h′ = rs−1

Since h′ and s′ can be computed from publicly available information, we then
obtain the following congruence relation, which indicates that (EC)DSA satisfies the
condition for Schnorr-like signature we defined in Section 1.2:

k ≡ s′ + h′d mod n

63

Appendix B

Subroutine of Algorithm 3

Algorithm 8 in the next page describes the subroutine that collects linear combination
of two such that their top consecutive (α + 1) bits coincide with a given value.

64

Algorithm 8 Collecting linear combinations of two routine
Input:
1: L - list of signatures sorted in descending order by h values

R - list of signatures sorted in ascending order by h values

c - target value in a (α+ 1)-bit binary format

τ - current bit-length upper bound of h values
Output: A - list of linear combinations of two (η, ζ) = L[i]+R[j] = (hi+hj , si+sj) such that the

value corresponding to the top consecutive (α+ 1) bits of η is equal to c, i.e., η[τ+1:τ−α+1] = c
2: i← 0
3: j ← 0
4: Create an empty list A
5: while Neither L[i] norR[j] is at the end do
6: (η, ζ)← L[i] +R[j] = (hi + hj , si + sj)
7: if η[τ+1:τ−α+1] > c then
8: Increment i
9: else if η[τ+1:τ−α+1] < c then
10: Increment j
11: else
12: Push (η, ζ) to A
13: Peek at the value ηL, where (ηL, ζL) := L[i+ 1] +R[j]
14: Peek at the value ηR, where (ηR, ζR) := L[i] +R[j + 1]
15: if ηL[τ+1:τ−α+1] = c and ηR[τ+1:τ−α+1] ̸= c then
16: Increment i
17: else if ηL[τ+1:τ−α+1] ̸= c and ηR[τ+1:τ−α+1] = c then
18: Increment j
19: else
20: k ← 1
21: if ητ−α = 0 then
22: while ηL[τ+1:τ−α+1] = c do
23: Push (ηL, ζL) to A
24: Increment k
25: (ηL, ζL)← L[i+ k] +R[j]
26: end while
27: Increment j
28: else
29: while ηR[τ+1:τ−α+1] = c do
30: Push (ηR, ζR) to A
31: Increment k
32: (ηR, ζR)← L[i] +R[j + k]
33: end while
34: Increment i
35: end if
36: end if
37: end if
38: end while
39: return A

65

Appendix C

Complete Performance Estimates

Table 6: Estimates for the minimum required number of signatures and the optimal
performance of reduction algorithms and a lattice attack when λ = 252

Biased bits Algorithm ι S Time Space

1
Ours 2 238.2 276.3 238.2

Sort-and-difference 5 244.2 244.2 244.2

Lattice attack – 28.4 2115.5 2115.5

2
Ours 3 227.5 255.0 227.5

Sort-and-difference 6 237.0 237.0 237.0

Lattice attack – 27.2 258.8 258.8

3
Ours 4 221.7 243.4 221.7

Sort-and-difference 8 229.1 229.1 229.1

Lattice attack – 26.5 243.3 243.3

4
Ours 5 221.0 242.0 221.0

Sort-and-difference 10 224.0 224.0 224.0

Lattice attack – 26.1 236.1 236.1

66

Table 7: Estimates for the minimum required number of signatures and the optimal
performance of reduction algorithms and a lattice attack when λ = 384

Biased bits Algorithm ι S Time Space

1
Ours 2 257.0 2114.0 257.0

Sort-and-difference 5 265.0 265.0 265.0

Lattice attack – 29.0 2167.2 2167.2

2
Ours 3 240.7 281.4 240.7

Sort-and-difference 7 249.1 249.1 249.1

Lattice attack – 27.8 280.8 280.8

3
Ours 4 231.9 263.7 231.9

Sort-and-difference 9 241.1 241.1 241.1

Lattice attack – 27.1 257.4 257.4

4
Ours 5 226.4 252.7 226.4

Sort-and-difference 10 236.0 236.0 236.0

Lattice attack – 26.7 246.4 246.4

Table 8: Estimates for the minimum required number of signatures and the optimal
performance of reduction algorithms and a lattice attack when λ = 224

Biased bits Algorithm ι S Time Space

1
Ours 2 234.2 268.3 234.2

Sort-and-difference 5 244.2 244.2 244.2

Lattice attack – 28.2 2104.6 2104.6

2
Ours 3 224.7 249.4 224.7

Sort-and-difference 6 233.0 233.0 233.0

Lattice attack – 27.0 254.1 254.1

3
Ours 4 221.1 242.2 221.1

Sort-and-difference 8 226.0 226.0 226.0

Lattice attack – 26.4 240.4 240.4

4
Ours 4 219.6 239.1 219.6

Sort-and-difference 10 222.1 222.1 222.1

Lattice attack – 25.9 234.0 234.0

67

Table 9: Estimates for the minimum required number of signatures and the optimal
performance of reduction algorithms and a lattice attack when λ = 192

Biased bits Algorithm ι S Time Space

1
Ours 2 229.6 259.2 229.6

Sort-and-difference 4 239.4 239.4 239.4

Lattice attack – 28.0 292.0 292.0

2
Ours 3 221.5 243.0 221.5

Sort-and-difference 6 228.5 228.5 228.5

Lattice attack – 26.8 248.7 248.7

3
Ours 4 221.1 242.2 221.1

Sort-and-difference 8 222.4 222.4 222.4

Lattice attack – 26.1 236.9 236.9

4
Ours 4 217.1 234.2 217.1

Sort-and-difference 9 220.3 220.3 220.3

Lattice attack – 25.7 231.5 231.5

Table 10: Estimates for the minimum required number of signatures and the optimal
performance of reduction algorithms and a lattice attack when λ = 160

Biased bits Algorithm ι S Time Space

1
Ours 2 225.0 250.0 225.0

Sort-and-difference 4 233.0 233.0 233.0

Lattice attack – 27.8 279.5 279.5

2
Ours 3 221.4 242.8 221.4

Sort-and-difference 6 223.9 223.9 223.9

Lattice attack – 26.5 243.4 243.4

3
Ours 3 218.3 236.6 218.3

Sort-and-difference 7 221.1 221.1 221.1

Lattice attack – 25.9 233.5 233.5

4
Ours 4 214.6 229.3 214.6

Sort-and-difference 9 217.1 217.1 217.1

Lattice attack – 25.3 229.0 229.0

68

Appendix D

Historical Records of
Bleichenbacher’s Attack

Here we list “underground” [Vau01] records of Bleichenbacher’s attack that appeared
in the literature.

Nov. 2000 Bleichenbacher announced the idea of statistical attack technique against DSA
in IEEE P1363 meeting. The description appears in the slides “On the genera-
tion of one-time keys in DL signature schemes” [Ble00].

Mar. 2001 Bleichenbacher announced the experimental results of an attack against 160-
bit DSA with 1.58-bit bias for 222 signatures at the Monteverita workshop with
the title “On the generation of DSS one-time keys”. The experimental setup is
recorded in [NS02, §1.3] as follows:

“The attack is based on clever meet-in-the-middle techniques, and
not lattices. Currently, the best experimental result with this attack
is that one can recover the secret key given a leakage of log 3≈ 1.58
bits for 222 signatures, in about 3 days on a 450 MHz Ultrasparc
using 500 Mb of RAM.”

Aug. 2005 Bleichenbacher announced the experimental results of attacks against 160-bit
DSAwith 1-bit bias for 224 signatures and 2-bit bias for 29 signatures in CRYPTO
RumpSession. The results appear in the slides “ExperimentswithDSA” [Ble05].

69

	Introduction
	Background
	Scope of this work
	Attacks on Nonces in Schnorr-like Signatures
	Montgomery Curve, Curve25519, qDSA
	Contributions
	Related Work

	Preliminaries
	Notations
	The quotient Digital Signature Algorithm
	Knapsack Problem

	Fault Attacks on qDSA
	Random Semi-Permanent Fault on the Base Point
	Instruction Skipping Fault on Base Point Initialization
	Preprocessing Signatures for Bleichenbacher's Attack
	Possible Countermeasures

	Bleichenbacher's Nonce Attack
	Bias Definition and Properties
	Range Reduction
	Bias Computation
	Recovering Remaining Bits

	Optimization and Parallelization of Bleichenbacher's Attack
	Our Approach: Using Schroeppel–Shamir Algorithm
	Analysis
	Parallelization
	Lower Bounds for the Amount of Signatures
	Data-(Time, Space) Trade-off
	Performance Comparison

	Implementation Results
	Attack against 2-bit Bias
	Attack against 3-bit Bias

	Concluding Remarks
	Bibliography
	Schnorr-like Signature Schemes
	Schnorr Signature
	Digital Signature Algorithm

	Subroutine of alg:hgj
	Complete Performance Estimates
	Historical Records of Bleichenbacher's Attack

