
Cryptography from Zero Knowledge
Advanced Security and New Constructions

Akira Takahashi

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Cryptography from Zero Knowledge
Advanced Security and New Constructions

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Akira Takahashi
June 28, 2022

Abstract

Zero knowledge interactive proof systems are a fundamental tool in modern cryptology,
forming the foundation of many efficient cryptographic primitives, such as identification
schemes and digital signatures. This thesis pushes forward the study of constructions
based on zero knowledge proofs in four different directions: two in advanced security
analysis of existing digital signatures, and two in new constructions supporting advanced
functionalities.

Our first contribution lies in side-channel attacks on discrete log-based signature schemes,
including ECDSA and Schnorr. We study the following extreme scenario of side-channel
leakage: what if each signing attempt leaks less than 1 bit of information about internal,
ephemeral randomness? We show that even such a mild leakage is exploitable in practice,
by giving several theoretical improvements to an existing approach to solving the so-called
hidden number problem (HNP).

In order to balance concerns of both randomness failures and the threat of fault attacks,
some signature designs are advocating a “hedged” derivation of randomness. Our second
contribution involves detailed security analyses of the fault resilience of hedged signatures
constructed from three-round public-coin protocols in the random oracle model, using the
methodology of provable security. As concrete case studies, we apply our results to hedged
versions of EdDSA and Picnic signature schemes.

The third result comprises new distributed signing protocols in the random oracle model
relying on standard lattice-based hardness assumptions. We study two similar classes of
distributed signing, namely, n-out-of-n signature and multi-signature, both of which allow
a group of signers to jointly produce a single signature on the same message. We realize
relatively simple lattice-based two-round distributed signing, by carefully lifting several
existing tricks known in the discrete log setting into the lattice world.

Our fourth contribution is in the domain of verifiable encryption. Verifiable encryption
is a protocol where one can provide assurance that an encrypted plaintext satisfies certain
properties or relations. In this part, we propose a novel, generic framework that realizes
verifiable encryption protocols supporting a large class of relations and public-key encryption
schemes, using zero-knowledge proof systems based on the MPC-in-the-head paradigm.

i

Resumé

Zero knowledge interaktive bevis-systemer er et fundamentalt værktøj for moderne kryp-
tologi. Det er en grundsten for mange effektive kryptografiske primitiver, såsom identifika-
tions protokoller og digitale signaturer. Denne afhandling bidrager til forskningen om zero
knowledge protokoller på fire forskellige måder: to af disse vedrører sikkerhedsanalyser af
eksisterende digitale signaturer og de resterende to vedrører nye konstruktioner der tillader
avancerede funktionaliter i forhold til den krypterede eller signerede data.

Vores første bidrag til forskningsområdet vedrører side-channel angreb på signatur
protokoller baseret på diskrete logaritmer, deriblandt både ECDSA og Schnorr. Vi kigger
på det følgende eksempel på side-channel lækage: hvad hvis hvert signerings forsøg lækker
mindre end 1 bit af information omkring den interne tilfældighed? Vi viser at selv sådan
en lille lækage kan udnyttes i praksis, ved at bruge informationen fra denne lækage til at
forbedre en eksisterende måde at løse det såkaldte Hidden Number Problem (HNP).

I forsøget på at balancere frygten for brugen af en “dårlig” tilfældighed og specifikke
fejl der kan opstå ved brugen af en mere deterministik tilfældighed, så er nogle signatur
protokoller begyndt at bruge en mere lagdelt metode til at tilføre tilfældighed til protokollen.
Vores andet bidrag involverer en detaljeret sikkerhedsanalyse af disse protokollers evne
til at modstå fejl ved denne beregning af tilfældighed, når de er konstrueret ud fra en
tre-runde public-coin protokol i modellen med tilfældigheds orakler. Som konkrete tilfælde,
udfører vi vores analyse på lagdelte versioner af EdDSA og Picnic signatur protokoller.

Vores tredje resultat omfatter nye distribuerede signerings protokoller i modellen der
tillader tilfældigheds orakler. Disse protokoller kræver kun at standard lattice-baserede
problemer er svære at løse. Vi kigger på to lignende klasser af distribuerede signerings
protokoller, specifikt dem der producerer en n-ud-af-n signatur, og multi-signaturer. Begge
disse klasser tillader en gruppe at producere én enkelt signatur for én besked, sammen.
Vi konstruerer en relativt simpel lattice-baseret distribueret-signerings protokol der kun
bruger to runder, ved at påpasseligt bruge forskellige eksisterende tricks man normalt kan
bruge når man arbejder med diskrete logaritmer, i en lattice-baseret model i stedet.

Vores sidste bidrag er ift verificerbar kryptering. Verificerbar kryptering er en protokol
hvor man kan forsikre folk om at en krypteret tekst tilfredsstiller forskellige egenskaber,
eller relationer. Til denne del giver vi en ny, generisk opskrift der kan bruges til at
opnå verificerbare krypterings protokoller, der supporterer en stor gruppe af relationer og
public-key krypterings metoder, ved at bruge zero-knowledge bevis systemer baseret på
MPC-in-the-Head paradigmet.

iii

Acknowledgments

This dissertation wouldn’t exist without the support of a number of people. I am grateful
to my wonderful advisors, Claudio Orlandi and Diego de Freitas Aranha, who guided me
through my journey towards a PhD. Claudio has always led by example: his enthusiasm for
research, innovative mind, and caring for every individual in the group have been a huge
inspiration to me. I have learned a great deal from Diego’s inclusiveness, dedication to
the research community, and passion for addressing real-world problems using technology.
Thank you, Claudio and Diego, for constantly caring about what is best for my life and
career, teaching me the importance of a professional mindset, and everything in between,
not to mention the countless technical discussions we had.

I have been lucky enough to be mentored by multiple other people, whether officially
or unofficially. Mehdi Tibouchi, my master’s advisor at Kyoto University and internship
mentor at NTT, has generously supported me in many collaborative projects. I am deeply
indebted to Mehdi for always enlightening me with fresh ideas and sharing his profound
knowledge of restaurants in Tokyo. Greg Zaverucha, my internship mentor at Microsoft
Research, has continuously assisted me since the beginning of my PhD. I would like to
thank Greg for always giving me hands-on guidance and making my summer in Redmond
joyful despite the pandemic. Chaya Ganesh has been leading exciting collaborative projects
even after she left for India. Thank you, Chaya, for nurturing my interest in zero knowledge
and always being open to discussions regardless of the time difference. From Ivan Damgård
I’ve learned a considerable amount both through our project and his lectures. I owe a lot
to his direction and extremely deep understanding of cryptology. Stefano Tessaro kindly
agreed to host me as a visitor at the University of Washington. I would like to thank
him for involving me in meetings and for exchanging ideas. Thanks to Masayuki Abe and
Tatsuaki Okamoto, who were my master’s co-advisors, I was introduced to this amazing
community. Without meeting them none of this would have happened.

I am indebted to every single person who co-authored papers with me. Thank you,
Emil Madsen Bennedsen, Sebastian Berndt, Cecilia Boschini, Matteo Campanelli, Thomas
Eisenbarth, Thomas Espitau, Pierre-Alain Fouque, François Gérard, Felipe Rodrigues
Novaes, Mahak Rakesh Pancholi, Mélissa Rossi, Okan Seker, Daniel Tschudi, Alexandre
Wallet, Luca Wilke, Yuval Yarom, and Yang Yu. Every single bit of collaboration has been
precious to me.

Thanks to my office mate Alexander Munch-Hansen this thesis has been completed
with a proper Danish abstract. I am grateful to everyone in the Aarhus crypto group for
creating a lively and enjoyable environment to work in. Sporadic conversations happening
at the crypto couch were always refreshing. I would also like to thank everyone at NTT
Musashino R&D Center for welcoming my random visits. I am thankful to Dario Fiore and
Nadia Heninger for being part of my committee and taking the time to read this thesis.

Special thanks to my parents, Akihiko and Shiori Takahashi, for their unconditional
love and support. Last but definitely not least, I would like to express my sincere gratitude
to my partner Mirka Niemi for believing in me and for always being there during difficult
times.

Akira Takahashi,
Aarhus, June 28, 2022.

v

To Koji Takahashi

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

1 Introduction 1
1.1 Proofs and Identifications . 1
1.2 Removing Interactions . 6
1.3 Overview of Thesis . 9
1.4 Other Publications . 15

I Advanced Security Analysis 17

2 LadderLeak 19
2.1 Introduction . 19
2.2 Preliminaries . 22
2.3 Timing Attacks on Montgomery Ladder . 27
2.4 Improved Analysis of Bleichenbacher’s Attack 30
2.5 Experimental Results . 37
2.6 Software Countermeasures . 40

3 Security of Hedged Fiat-Shamir Signatures 41
3.1 Introduction . 41
3.2 Preliminaries . 46
3.3 Formal Treatment of Hedged Signatures . 50
3.4 Security of Hedged Signatures Against Fault Attacks 54
3.5 Analysis of XEdDSA . 62
3.6 Analysis of Picnic2 . 62
3.7 Concluding Remarks . 64

II New Constructions 65

4 Two-Round Multi-Party Signing from Lattices 67

vii

viii CONTENTS

4.1 Introduction . 67
4.2 Preliminaries . 76
4.3 DS2: Two-round n-out-of-n Signing from Module-LWE and Module-SIS . . 85
4.4 MS2: Two-round Multi-signature in the Plain Public Key Model 98
4.5 Lattice-Based Commitments . 100

5 Verifiable Encryption from MPC-in-the-Head 105
5.1 Introduction . 105
5.2 Preliminaries . 113
5.3 Our Transform . 117
5.4 Methods for Compressing Ciphertexts . 123
5.5 Concrete Instantiations . 127
5.6 Conclusion and Future Work . 131

Bibliography 133

Chapter 1

Introduction

1.1 Proofs and Identifications

1.1.1 Interactive Proofs

Little Victor is trying to solve a math homework problem that must be answered with a
“Yes” or “No”. After some trial and error, he feels the problem is way above his head, so he
decides to ask for help from his brilliant classmate Peggy, and in return agrees to give her
some candies in case she solves it. Peggy gets back to Victor after a few days, claiming
the answer is “Yes”. Before handing in his homework to school, Victor needs to validate
her claim and would also like to learn the detailed step-by-step solution to the problem.
However, from her experience Peggy knows Victor to be a fickle-minded person, so she is
afraid that Victor will change his mind and not give her the candies after she teaches him
the details. Is there any good way for Peggy to convince Victor that the answer is indeed
“Yes”, without revealing how she came to this conclusion?

An interactive proof system, first formalized as a concept by Goldwasser, Micali, and
Rackoff [GMR85, GMR89], offers a solution to these kinds of scenarios. Let us abstract
out the problem. Consider a language L, a set of problem instances to which the answer is
“Yes”. Peggy and Victor are now modeled as probabilistic Turing machines, prover P and
verifier V, respectively. Typically, P has unbounded computational power so that she can
decide whether a statement x ∈ L is true or not, whereas V should run in polynomial time
in the length of x. The goal of the proof system is that P convinces V that x is indeed in
L after going through some interactive process specified in a protocol.

The common theme underlying this thesis is cryptographic constructions that arise
from public-coin protocols, a special case of general interactive proof systems. The concept
was first coined by Babai’s work [Bab85], wherein it is formulated as the Arthur-Merlin
game using interaction between mythical figures as a metaphor. A public-coin protocol
proceeds as follows: the prover P sends to the verifier V the first message a1, V responds
with challenge e1 sampled uniformly at random from a set of bit strings Ch1 (i.e., V flips
random coins publicly), P sends the second message a2, which is responded with e2 ∈ Ch2
by V , and so forth. The vast majority of existing protocols for concrete languages, such as
quadratic residues [GMR85], graph isomorphism [GMW86], graph 3-colorability [GMW86],
and Hamiltonian graphs [Blu86], indeed follow this blueprint, whereas some rely on the
verifier’s ability to keep their coins private, e.g., quadratic non-residues [GMR85] and graph
non-isomorphism [GMW86] (although even they can be turned into public-coin protocols

1

2 CHAPTER 1. INTRODUCTION

by adding extra rounds [GS86]).
While one can consider protocols with an arbitrary number of rounds, the canonical

form of public-coin protocols has three rounds of interaction:
1. P sends a commit message a.
2. V returns a challenge e ∈ Ch.
3. P responds with z.

Most constructions we will look at in later chapters follow this simple format.

Soundness: protecting against dishonest provers Clearly, one should at least design
a protocol satisfying completeness, meaning that if both parties correctly follow the protocol
specification on input x ∈ L, V should output 1, indicating “I am convinced”. Suppose we
have designed a protocol satisfying completeness. However, we are not done yet, because
we still have to consider a situation where either party cheats during the protocol. As you
may have noticed, not everyone behaves honestly in this world, so we need to devise a
mechanism to catch or prevent dishonesty—this is exactly why we study cryptology. So
what if the statement x is not in the language but P tricks V into believing x ∈ L? This is
obviously bad in the initial scenario, because it implies that Peggy can get away without
really doing Victor’s homework, yet she gets free candies! To prevent such a situation,
proof systems should have soundness, meaning that any potentially cheating prover P∗
has a hard time convincing V if x /∈ L. Or in real life, it would be probably reasonable to
assume cheating provers only have bounded computational resources. If soundness only
holds for polynomial-time P∗, a system is said to be an argument instead of proof.

Zero Knowledge: protecting against curious verifiers There can be potentially
many protocols realizing a secure proof system for a language L. For the sake of simplicity,
let us consider a language L in the class NP (although it is known that a class of
languages for which interactive proofs exist is as large as PSPACE [LFKN90, Sha90]).
This implies that there exists the corresponding binary relation RL := {(x,w) : x ∈
L ∧ w is an NP-witness for x}. An obvious way for P to “prove” x ∈ L is to run the
following protocol: she sends a witness w explaining x ∈ L, and V verifies w by checking
(x,w) ∈ RL, which can be indeed carried out in polynomial time. This naïve approach,
however, is not really a satisfactory solution whenever confidentiality matters. Notice that
even though w can be efficiently tested, the prover is giving out far more than what’s
necessary to convey just 1-bit of information, i.e., x ∈ L. In certain situations, such as the
above motivating example, P may not want to disclose anything else than the fact that
x ∈ L.

Zero knowledge (ZK) is an additional important property for proof systems. On a
high-level, it requires that a verifier should gain from the protocol execution nothing
more than the fact that x ∈ L, even if he behaves dishonestly. Perhaps surprisingly,
mathematically defining what it means to “learn nothing” turned out to be an intricate
task. Simulation paradigm is one of the most important concepts in cryptography to
deal with such an issue, and has seen success in defining security notions for a variety of
cryptographic objects, such as zero knowledge proofs, multi-party computation, and public
key encryption [Gol01, HL10, CDN15, Lin17b]. We say a proof system is (computationally)
zero knowledge if for any probabilistic polynomial-time cheating verifier V∗ there exists an
efficient simulator S that can produce the view of V∗ (i.e. all the information that V∗ can
observe during an execution of the protocol). The rationale behind this somewhat quirky

1.1. PROOFS AND IDENTIFICATIONS 3

formulation becomes clear from real vs ideal reasoning. Let us first consider the ideal world,
where there is no prover, and only V∗ with input statement x exists. A simulator S can be
seen as an imaginary entity spawned in the ideal world, and thus whatever S can produce
essentially corresponds to the kind of information that an attacker V∗ can compute on his
own in this ideal world. We then compare this to what V∗ sees in the real world, where he
runs an actual protocol with P . If the two worlds are indistinguishable with each other, we
can conclude that V∗ has “learned nothing new” in the real world.

Designing a protocol meeting full-fledged zero knowledge is often challenging, so it is
also useful to relax the requirement by considering honest verifier zero knowledge (HVZK).
Here, we assume that a verifier V∗ does not deviate from the protocol while it may try
to retrieve some useful information by interacting with a prover P. As we shall see later,
HVZK turns out sufficient in many cases for constructing other cryptographic primitives
from proof systems.
Proof of Knowledge: making sure the prover knows something Finally, we observe
that there are situations where just plain soundness is not an interesting property. Suppose
a protocol for the language consisting of group elements for which a discrete logarithm
exists:

LDL :=
{
x : ∃w ∈ [0, q − 1] : gw = x mod p

}
where p and q are assumed to be primes such that q|p− 1 and g ∈ Z∗p generates the cyclic
subgroup of order q. In fact, achieving soundness for such a language is trivial since 〈g〉
is the only subgroup of order q in Z∗p and any verifier can easily check whether x belongs
to 〈g〉 by testing xq = 1 mod p. In other words, it is rather pointless to consider proof
of membership for languages like LDL. What one should strive for instead is knowledge
soundness: at a high-level, it requires that the prover actually knows a right witness w
corresponding to the statement x whenever the verifier is convinced. If a proof system Π
satisfies both completeness and knowledge soundness, we say Π is proof of knowledge (PoK).
This stronger version of soundness already appeared in [GMR85] as a concept and later
developed into formal definitions in subsequent works [FFS88, BG93], where knowledge
soundness is defined with respect to the existence of an efficient extractor that outputs
a valid witness using any successful prover as a subroutine. The most typical approach
to proving knowledge soundness is via rewinding. Here, we construct an extractor E that
has oracle access to the prover P∗ and eventually extracts a witness w by resetting P∗’s
state multiple times, and by feeding different verifier messages to P∗ whenever reset. For
canonical three-round protocols, it is also useful to define a closely related notion called
special soundness: a valid witness for x can be computed given two accepting transcripts
sharing the first prover message i.e., (a, e, z) and (a, e′, z′). Assuming special soundness, one
can construct such an extractor for knowledge soundness that halts in expected polynomial
time [CDS94, Dam10].

Taken together, Cramer in his PhD thesis [Cra96] introduced Σ-protocols, characterizing
canonical three-round protocols with special soundness and HVZK. As we shall see soon,
Σ-protocols form the foundation of various efficient cryptographic protocols/primitives and
have been extensively used in the literature to date.
Properties in a nutshell All in all, we can summarize the following standard properties
of interactive proof systems.

• Completeness If both parties honestly follow the protocol specifications on input
x ∈ L, then V outputs 1.

4 CHAPTER 1. INTRODUCTION

• Soundness For sufficiently large false statement x /∈ L, for any potentially malicious
prover P∗, V after interacting with P∗ on input x outputs 1 except with probability
negligible in the length of x.

• Special Soundness (for three-round protocols) Given two transcripts (a, e, z) and
(a, e′, z′) such that e 6= e′, if they both verify with respect to x, one can efficiently
extract a witness w such that (x,w) ∈ RL.

• Knowledge Soundness There exists an efficient extractor E satisfying the following
requirement: for any true statement x ∈ L, for any potentially malicious prover P∗,
if V after interacting with P∗ on input x outputs 1, E having access to P∗ outputs w
such that (x,w) ∈ RL.

• Zero Knowledge For sufficiently large true statement x ∈ L, for any potentially
malicious verifier V∗, there exists an efficient simulator S, that outputs a string
indistinguishable with the view of V∗ while interacting with P on input x.

• Honest Verifer Zero Knowledge This is a weaker version of zero knowledge. The
difference is that the simulator only needs to simulate the view of honest verifier V
correctly following the protocol.

Note that the above definitions are rather informal since we have not defined precise
syntax of protocol execution, what it means by “efficient”, flavors of indistinguishability
(i.e. perfect, statistical, or computational), etc. Later chapters will contain more formal
definitions suitable for each context.

1.1.2 Identification Schemes

An identification scheme is a closely related object to proof systems. A scheme ID is a tuple
of three algorithms (IGen,P,V), where IGen is an instance generator returning a key pair
(pk, sk) on security parameter as input, and P and V are analogous to prover and verifier of
proof systems. A prover P first obtains a key pair (pk, sk) generated by IGen and keeps sk
secret while publishing pk in public, so that any verifier V has access to pk. Now the goal of
identification is 1) that V makes sure the person he is talking to is the genuine owner of sk
paired with pk, and 2) that P successfully convinces V without leaking her secret identity sk.
One may notice that these requirements are very analogous to knowledge soundness and
zero knowledge of proof systems, respectively. Taking advantage of this observation, Fiat
and Shamir [FS87] and Feige, Fiat, and Shamir [FFS88] constructed the first ZKPoK-based
identification schemes. Since then many efficient identifications have been proposed in the
literature, such as the RSA-based one by Guillou and Quisquarter [GQ88] and the discrete
log-based one by Schnorr [Sch90, Sch91]. To see how proof and identification are related,
let us first review security notions of identification schemes, following the formulations of
Abdalla-An-Bellare-Namprempre [AABN02] and Kiltz-Masny-Pan [KMP16]. Consider the
following security game between a cheating prover P∗ and a challenger C.

1. The challenger C runs an instance generator as (pk, sk) ← IGen(1κ) and hands pk
over to the adversary P∗

2. The challenger C returns polynomially many transcripts (i.e., the messages exchanged
between honest P(sk, pk) and V(pk) during protocol executions) to the adversary P∗.

3. The adversary P∗ initiates an identification protocol with an honest verifier V(pk).
4. P∗ wins if and only if V outputs 1 after the protocol execution.

1.1. PROOFS AND IDENTIFICATIONS 5

The step highlighted in orange is optional. Without that step (resp. with that step), if the
probability that any polynomial time adversary P∗ wins the above game is negligible in
κ, we say ID is IMP-KOA-secure, i.e., secure against impersonation under key only attack
(resp. IMP-PA-secure, i.e., secure against impersonation under passive attack).

So intuitively, once a Σ-protocol Π = (P,V) is given, it seems that we immediately
obtain a secure identification scheme by simply defining pk := x, sk := w, P := P and
V := V. But what about IGen? Notice that security requirements for proof systems say
nothing about the hardness of relation. This means one can in principle construct a proof
system which is provably HVZK and special sound, yet recovering a witness from the
statement is easy: e.g., consider Schnorr’s Σ-protocol for a “weak” discrete log language
consisting of points on vulnerable elliptic curves. In this case, whatever IGen outputs,
anyone can compute a supposedly secret identity sk from pk, making the corresponding
identification scheme completely useless in practice!1 To circumvent this, we must assume
the existence of a hard instance generator IGen for relation RL, meaning that IGen samples
a pair (pk, sk) from RL such that it is computationally hard to recover sk given only pk.
Now, it is easy to see Σ-protocols give rise to secure identification schemes. To provide a
brief background on common patterns of security reduction in this thesis, we will also give
a sketch of proof.

Theorem 1.1 (Secure identification from Σ-protocol (informal)). Let L be an NP-language
and RL be the associated NP-relation. Suppose Π = (P,V) is a Σ-protocol for RL, that is,
Π is complete, special sound, and HVZK. If IGen is a hard instance generator for RL, then
the corresponding ID = (IGen,P,V) is IMP-PA-secure.

Proof sketch. Let us first prove IMP-KOA only using special soundness. Given a cheating
prover P∗ winning the IMP-KOA game, consider the following reduction A breaking the
hardness of IGen:

1. Upon receiving an instance pk from IGen, the reduction forwards pk to P∗.
2. Upon receiving the first protocol message a from P∗, A plays an honest verifier by

returning uniformly random challenge e from Ch.
3. If P∗ successfully convinces A by returning a response z, A resets P∗’s state to the

point where P∗ outputs the first message a, and then answers with freshly sampled
challenge e′ ∈ Ch. Otherwise, A halts with output ⊥.

4. Upon receiving a response z′ from P∗, if the second run of the protocol also convinces
A and e 6= e′, then A outputs a witness w = sk extracted from two transcripts (a, e, z)
and (a, e′, z′) that are accepting with respect to pk (Note this is guaranteed thanks
to special soundness). Otherwise, A halts with output ⊥.

One can show the above strategy successfully returns a valid witness with probability at
least (acc−1/|Ch|)2 thanks to the reset lemma [BP02, KMP16], where acc is the probability
that P∗ wins the IMP-KOA game in a single run of the protocol.

What about IMP-PA? Notice the reduction A cannot return transcripts by simply
running actual P and V, because this requires the knowledge of sk, which A does not know.
This is where HVZK of the underlying Σ-protocol kicks in: now between Step 1 and 2, A
generates a bunch of simulated transcripts by running the HVZK simulator S on input

1Note that this still does not contradict the requirement of ZK, since if attackers can in any case
compute sk from pk alone, they have learned “nothing new” from the protocol executions.

6 CHAPTER 1. INTRODUCTION

pk and passes them to P∗. Thanks to the HVZK property, cheating provers have a hard
time distinguishing these simulated transcripts from real ones, and one can still break the
hardness of IGen using the standard hybrid arguments.

We close this section by noting other approaches towards secure identifications that
do not necessarily rely on HVZK and special soundness. First, one could exploit witness
indistinguishability (WI) [FS90] instead of HVZK to meet IMP-PA. The property roughly
states that any verifiers have a hard time guessing which of potentially many witnesses are
used by the prover. Hence, a challenger C can simply generate honest transcripts with one
of many witnesses, while the witness extracted from a cheating prover P∗ differs from the
one used by C with high probability, which helps security reduction break the hardness
of instance generator. Several ways to realize WI appeared in the literature, e.g., OR-
composition of Σ-protocols [CDS94, CPS+16a, CPS+16b, FHJ20], the discrete log-based
protocol by Okamoto [Oka93], and lattice-based protocols by Lyubashevsky [Lyu08, Lyu09].
Second, it is also possible to rely on the hardness of deciding membership for a language
instead of special soundness. This approach assumes the existence of lossy key generator
LGen, which outputs some fake key pk′ for which no associated sk exists (i.e., pk′ /∈ L) with
high probability, while it is hard for an adversary to distinguish such a fake key from pk ∈ L
generated via the legitimate generator IGen. Given this, a challenger C can cheat by running
LGen instead of IGen without P∗ noticing. Now it should be infeasible for P∗ to convince the
verifier since no valid secret identity exists to begin with. This elegant approach is known
as lossy identifications in the literature [KW03, GJKW07, AFLT16, KLP17, KLS18] and
helps us avoid subtle reduction loss caused by rewinding.

1.2 Removing Interactions

1.2.1 The Fiat-Shamir Paradigm

The protocols we have seen so far require some interaction between prover and verifier.
In practice, however, it would be ideal to avoid interaction so that both parties do not
have to be online at the same time. Interaction also causes subtle issues related to parallel
repetitions: if the size of challenge space is limited, one may want to run in parallel many
instances of the same protocol to guarantee sufficiently small soundness error, e.g., < 2−128.
Although HVZK does hold under parallel repetitions, it is not necessarily the case for full-
fledged ZK [GK96]. Non-interactive proofs and identifications are attractive protocols from
both practical and theoretical standpoints. The seminal work of Fiat and Shamir [FS87]
offered a generic conversion method turning public-coin interactive proofs/identifications
non-interactive, which is often referred to as the Fiat-Shamir transform in the literature.
On a high-level, a non-interactive prover obtained by the Fiat-Shamir transform plays an
honest verifier by hashing the first prover message together with a statement2, to derive
challenges from the hash value on her own. It turns out that this simple and neat idea has
more applications than just removing interactions.

2It is worth mentioning that including a statement is crucial to retaining the security of the resulting
non-interactive proofs. In fact, Bernhard, Pereira, and Warinschi [BPW12] presented devastating attacks
completely breaking the soundness of Fiat-Shamir NIZK if the statement is missing in the hash input.
Interestingly, some Fiat-Shamir signatures on the other hand retain their security without hashing the
statement (i.e., the public key) even in the multi-user setting [KMP16].

1.2. REMOVING INTERACTIONS 7

1.2.2 Digital Signature from Identification

The Fiat-Shamir transform is also one of the most popular approaches to constructing
digital signatures [DH76]. A cryptographic signature scheme, denoted by a tuple of three
algorithms SIG = (Gen, Sign,Ver), can be thought of as a digital analogue of real-life
handwritten signatures. The signer first generates a key pair (sk, pk) by running the
key generation algorithm Gen, where pk roughly corresponds to the “style” of his/her
handwritten signature recorded in a public registry, and sk is essentially the secret “muscle
memory” enabling one to reproduce that particular style. On receiving a message m to
be signed, the signer runs the Sign algorithm on input (sk,m), returning a signature on
m. Then anyone in the world knowing pk should be able to verify a pair (σ,m) using the
algorithm Ver, as long as it was produced by the legit signer.

What about security? Goldwasser, Micali, and Rivest [GMR88] formalized different
security notions for digital signatures, depending on the combination of attack behaviors
and the definition of “forgery”. Here we recall two of them forming the de facto standards
nowadays. The bare minimum requirement is that nobody except for the actual owner of
sk should be able to create a valid signature on any message, given just pk as input. This
is the so-called UF-KOA security (existential unforgeablility under key only attack). This
however is not sufficient for modeling real-world adversarial behaviors, because malicious
attackers may adaptively ask the owner of sk to sign many messages of their own choice
and later try forging a signature on new message m∗ after observing these legitimate
signatures.In this setting, the attacker’s strategy might vary, e.g., they might manage to
forge by carefully combining the existing signatures, or they might even completely recover
sk if the Sign algorithm leaks partial information about sk per each query. The UF-CMA
(existential unforgeablility under (adaptive) chosen message attack) is a stronger security
guarantee to rule out such attacks. Put formally, a signature scheme is said to be UF-CMA
secure if for any probabilistic polynomial time forger F, the probability that F wins the
following game is negligible in security parameter κ.

1. The challenger C runs a key generation algorithm as (pk, sk)← Gen(1κ) and hands
pk over to the forger F.

2. On receiving a query m from F, the challenger C runs Sign(sk,m) to obtain σ and
returns σ to F.

3. The forger F outputs a message-forgery pair (m∗, σ∗).
4. F wins if and only if Ver outputs 1 on input (pk,m∗, σ∗) and m∗ has never been

queried to the challenger.

The step highlighted in orange is optional. Without that step, it degrades to the UF-KOA
game. The reader may notice similarities with the security notions for identification schemes
we discussed above: the chosen message attack queries correspond to passive attacks of the
IMP-PA game, and the winning condition of a signature forger is somewhat analogous to
that of IMP-KOA/IMP-PA. Indeed, they are closely related to each other as the Fiat-Shamir
turns canonical identification schemes into signature schemes. Given ID = (IGen,P,V) and
some cryptographic hash function H : {0, 1}∗ → Ch, the Fiat-Shamir-transformed signature
scheme FS[ID,H] = (Gen,Sign,Ver) is defined as follows.

• Gen(1κ) is identical to IGen(1κ)
• Sign(sk,m) proceeds as follows

8 CHAPTER 1. INTRODUCTION

1. Run the first stage of P on input sk to produce a.
2. Derive challenge e = H(pk, a,m).
3. Run the second stage of P to obtain z.
4. Output σ := (a, z) as a signature on m.

• Ver(pk, σ′,m) parses σ′ as (a′, z′), and outputs 1 if and only if V of the under-
ling canonical identification scheme accepts (pk, a′, e′, z′), where e′ is recovered by
computing hash H(pk, a′,m).

1.2.3 Provable Security of Fiat-Shamir

Many modern, efficient signature schemes, such as the Schnorr signature [Sch90], follow
this format, and Fiat-Shamir based signatures have been successfully deployed in today’s
real-world systems. But what about provable security? Can we jump into the conclusion
that FS[ID,H] is a secure signature if H is instantiated with standard cryptographic hash
functions, such as SHA-256? Things are not quite so simple in the standard model because
several counterexamples exist in the literature [GK03, BDG+13]. In particular, Goldwasser
and Kalai [GK03] proved the existence of secure canonical identification schemes ID for
which FS[ID,H] yields universally fogeable digital signature schemes for any hash function
H. This negative result indicates that the Fiat-Shamir paradigm fails for some schemes and
that one has to carefully investigate the properties needed for the function H by looking at
inner workings of each specific ID, leading to a recent line of research striving for secure
instantiation of Fiat-Shamir in the standard model, e.g., [CCRR18, CCH+19].

So despite its simplicity, provable security of the Fiat-Shamir paradigm turned out to be
extremely subtle. Luckily, there is a somewhat heuristic, yet widely accepted methodology
that can make our life much easier: the random oracle model (ROM), originally introduced
by Bellare and Rogaway [BR93], is a powerful paradigm that attempts to give proof of
security by assuming the existence of a “random oracle” O. The oracle O essentially
behaves like an ideal hash function, in that 1) anyone in the world has black-box access to
O, 2) O returns a uniformly random bit string of particular length on each distinct input,
and 3) O keeps track of all previous input-output pairs and consistently returns the same
output associated with a particular input if the input was previously queried by someone.

Clearly, such a convenient oracle does not exist in real life and there are some (albeit
contrived) schemes that are proven secure in the ROM, yet become insecure once the RO
is instantiated with any concrete hash function [CGH98, GK03]. Arguably, our community
seems to have gained some confidence in relying on proofs in the ROM, perhaps because we
have never observed “real-world” schemes that turned out insecure due to the RO [KM15].
The recent surge of the “quantum” random oracle model (QROM) [BDF+11] (where
the adversary is modeled as a quantum computer and is allowed to query the RO with
quantum superposition) in the literature also indicates that the overall methodology is
considered sound, while it greatly simplifies security proof. Admitting the usefulness of
heuristics, previous works analyzed security of the Fiat-Shamir transform in the classical
ROM [OO98, PS00a, AABN02, FKMV12, KMP16] and in the quantum ROM [DFG13,
Unr17, KLS18, LZ19, DFMS19, DFM20]. The RO methodology has further succeeded
in enabling online extractability of some schemes [Pas03, Fis05, Unr15, Kat21, DFMS21,
DFMS22], circumventing the necessity of rewinding the adversary when proving knowledge
soundness.

1.3. OVERVIEW OF THESIS 9

We are now set out to recall security of Fiat-Shamir signatures in the ROM, following
the result of [AABN02].

Theorem 1.2 (Secure signature from identification in the ROM (informal)). Let ID =
(IGen,P,V) be an IMP-PA-secure canonical three-round identification scheme. If H is
modeled as a random oracle, then FS[ID,H] = (Gen,Sign,Ver) is a UF-CMA-secure signature
scheme in the random oracle model.

Proof sketch. Let us first prove UF-KOA only assuming IMP-KOA of ID. Given a forger F
winning the UF-KOA game, consider the following reduction P∗ breaking IMP-KOA:

1. Upon receiving an instance pk from the IMP-KOA challenger, P∗ forwards pk to F.
2. P∗ responds to RO queries made by F as the actual RO O would, except at one query

picked uniformly at random: P∗ parses the query input as (pk, a′,m′), and initiates
an impersonation attack using a′ as its first message. On receiving challenge e′, it
programs the RO such that it returns e′ on input (pk, a′,m′).

3. Upon receiving a message-forgery pair (m∗, (a∗, z∗)) from F, if it verifies with pk and
if (pk, a∗,m∗) was previously forwarded to the IMP-KOA game, P∗ outputs z∗ as a
response. Otherwise, P∗ halts with ⊥.

The above reduction successfully breaks IMP-KOA, albeit with some multiplicative factor
of loss proportional to the number of RO queries.

Once we assume IMP-PA security of the underlying ID, it is straightforward to extend
the proof to show UF-CMA: whenever the forger makes a sign query with input message
m, the reduction consumes one of transcripts (a, e, z) received in the IMP-PA game and
programs the RO so that it returns e on input (pk, a,m). This perfectly simulates the
forger F’s view in the UF-CMA game, and thus one can use F to break IMP-PA in a similar
fashion.

1.3 Overview of Thesis
As reviewed above, public-coin proof systems are a powerful tool in cryptology since
they form the foundation of many efficient non-interactive proofs, identifications, digital
signatures, etc. The goal of this thesis is to push forward the study of cryptographic
constructions based on public-coin protocols in different directions. The main body of this
thesis is dissected into two parts: advanced security analyses of existing digital signature
schemes, and new constructions supporting extended functionalities. Each part further
comprises two independent results, which we summarize below. In all publications the list
of authors is sorted alphabetically rather than the extent of individual contributions.

Part I Advanced Security Analysis of Digital Signatures

In this part, we investigate the efficacy of stronger attack models that are not covered by
the traditional framework of provable security. Notice that the usual security notions for a
signature only allow adversaries to have black-box access to the signing oracle, meaning
that they can neither peek at nor influence internal states of a signer. Although this is a
reasonable assumption in theory and often gives rise to elegant security proofs, there is no
guarantee that real life attackers respect the aesthetics of our tradition once the schemes
are deployed in the wild. So what happens, for example, if the attacker somehow manages

10 CHAPTER 1. INTRODUCTION

to learn side-channel information about private randomness used by the signer in addition
to an output signature? Or what if the randomness used by the signer is somewhat biased?
It is in fact easy to see that the proofs for Theorems 1.1 and 1.2 will miserably fail once a
sign query leaks internal states of the Sign function, because the underlying zero knowledge
simulator simply cannot provide such information.

It turns out that the consequences are a lot more serious than just “proof not going
through”—such randomness failures often enable a devastating key recovery attack. To
see why, it is instructive to look at the Schnorr scheme [Sch91] as an example. Recall that
a prover of the underlying Σ-protocol proceeds as follows: 1) sample uniform r ∈ Zq and
output a = gr as a commit message, 2) receive uniform challenge e ∈ Zq, and 3) compute
the response z = r + e · sk mod q. Suppose the prover reuses the same r across different
protocol executions by mistake and thus the same a appears more than once. Since the
verifier still freshly samples challenges, the protocol will end up producing transcripts
with distinct challenges. The attacker can now abuse special soundness to extract sk by
observing two transcripts (a, e, z) and (a, e′, z′).

The common theme of this part is randomness failures. Randomness failures oc-
cur in various ways in practical systems: 1) side-channel analysis [Koc96], helping at-
tackers steal secrets like signing keys by exploiting various side-channel leakages from
cryptographic devices, such as the time a device spends running sensitive operations,
2) fault analysis [BDL97], an active version of side-channel attacks that deliberately
causes malfunction in the target device, e.g., via voltage glitching, or 3) implementa-
tion mistakes involving insecure implementation of random number generator, e.g., the
well-known vulnerability of the ECDSA implementation used for signing PlayStation 3 soft-
ware [Fil11]. As researchers still keep discovering such vulnerabilities in today’s deployed
systems [MBA+21, BH19, JSSS20, DDE+18, ABuH+19, Rya18, uHGDL+20, MSEH20],
it is paramount to further analyze the exact risk of these powerful attacks and propose
appropriate countermeasures to prevent them in practice. We summarize contributions of
each chapter below.

Chapter 2 LadderLeak

This chapter is based on the main body of the following published work [ANT+20a].
The result was also presented at Real World Crypto 2021 and Black Hat Europe 2020.
Appendices are deferred to the full version [ANT+20b].

[ANT+20a] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom.
LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In ACM CCS
2020, pp. 225–242. ACM Press, 2020. DOI: 10.1145/3372297.3417268
[ANT+20b] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom.
LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. Cryptology
ePrint Archive, Report 2020/615, Full version. Available at https://eprint.iacr.
org/2020/615.pdf

Background Schnorr and (EC)DSA are discrete log-based signature schemes broadly used
in real-world systems. It is well-known that ephemeral randomness of these schemes is
extremely sensitive: if the randomness r does not completely follow the uniform distribution
over Zq or r’s partial bits are leaked, an attacker can eventually recover the secret signing
key by collecting sufficiently many signatures [Ble00, HGS01]. The key recovery part is

https://dx.doi.org/10.1145/3372297.3417268
https://eprint.iacr.org/2020/615.pdf
https://eprint.iacr.org/2020/615.pdf

1.3. OVERVIEW OF THESIS 11

a particular instance of Boneh and Venkatesan’s hidden number problem (HNP) [BV96].
That observation has been practically exploited in many attacks in the literature, taking
advantage of implementation defects or side-channel vulnerabilities in various concrete
ECDSA implementations. However, most of the attacks so far have relied on at least 2 bits
of randomness bias.
Contributions This chapter studies the following extreme scenario of the HNP: what if
each signing attempt leaks less than 1 bit of information about randomness, in the sense that
it reveals the most significant bit of one-time randomness, but with probability < 1? We
show that even such a mild leakage is exploitable in practice, by giving several theoretical
improvements to Bleichenbacher’s Fourier analysis approach to solving the HNP [Ble00,
Ble05]. We then uncover LadderLeak, a novel class of side-channel vulnerabilities in
implementations of the Montgomery ladder used in ECDSA scalar multiplication. The
vulnerability is in particular present in several versions of OpenSSL. Taken together, we
practically break LadderLeak-vulnerable ECDSA implementations instantiated over the
sect163r1 and NIST P-192 elliptic curves. In so doing, we achieve several significant
computational records in practical attacks against the HNP. Although the original result is
tailored to attacks on ECDSA, the improvements to HNP analysis directly affect Schnorr
with biased randomness.

Chapter 3 Security of Hedged Fiat-Shamir Signatures

This chapter is based on the main body of the following published work [AOTZ20]. A short
remark on HVZK has been inserted before Definition 3.2 and the complete description of
OFaultSign is added in Fig. 3.4. Further details are deferred to the full version [AOTZ19].

[AOTZ20] D. F. Aranha, C. Orlandi, A. Takahashi, and G. Zaverucha. Security
of hedged Fiat-Shamir signatures under fault attacks. In EUROCRYPT 2020,
Part I, vol. 12105 of LNCS, pp. 644–674. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-45721-1_23

[AOTZ19] D. F. Aranha, C. Orlandi, A. Takahashi, and G. Zaverucha. Security of
hedged Fiat-Shamir signatures under fault attacks. Cryptology ePrint Archive, Report
2019/956, Full version. Available at https://eprint.iacr.org/2019/956.pdf

Background To mitigate the catastrophic risk of randomness failure, deterministic gener-
ation of one-time randomness was adapted in several signature schemes, including, but
not limited to, EdDSA [BDL+12], ECDSA [Por13], and some lattice-based post-quantum
signatures [BAA+19, LDK+19]. This solution attempts to avoid biased/reused randomness,
by deriving r via a hash function instead of relying on a pseudo random generator (PRG):
it computes r = H(sk,m), where sk is a signing key and m is a message to be signed.

However, multiple recent studies have practically demonstrated that such de-randomized
Fiat-Shamir schemes are vulnerable to differential fault attacks [Bae14, Sch16, BP16, RP17,
ABF+18, PSS+18, SB18, BP18, RJH+19]. The attack is simple, yet quite devastating:
essentially, a fault attacker can perform a full key recovery after observing one legitimate
signature σ on m, and one faulty signature σ̃ on the same m, which shares the randomness
with σ due to the deterministic nature. In order to balance concerns of both randomness
failures and the threat of fault injection, some signature designs [Per16, ZCD+19, qTE19]
are advocating a “hedged” derivation of randomness: they compute r = H(sk,m, n), where
n is an additional nonce. The benefit of randomness hedging is that the fault attack can

https://dx.doi.org/10.1007/978-3-030-45721-1_23
https://dx.doi.org/10.1007/978-3-030-45721-1_23
https://eprint.iacr.org/2019/956.pdf

12 CHAPTER 1. INTRODUCTION

be prevented as long as a nonce n is non-repeating, while n does not need to be completely
uniform. Despite the growing popularity of the hedged paradigm in practical signature
schemes, to the best of our knowledge, there has been no attempt to formally analyze the
fault resilience of hedged signatures.
Contribution This chapter involves detailed security analyses of the fault resilience of
hedged signatures constructed from three-round public-coin protocols in the random oracle
model, using the methodology of provable security. We first expand the usual UF-CMA
security game by incorporating an adversarial model characterizing bit-tampering fault
attacks, and investigate their impact across different steps of the signing operation. Under
the proposed model we formally prove that for some types of faults, attacks are mitigated
by the hedged paradigm, while attacks remain possible for others. As concrete case studies,
we then apply our results to XEdDSA [Per16], a hedged version of EdDSA used in the
Signal messaging protocol, and to Picnic2 [ZCD+19], a hedged Fiat-Shamir signature
scheme in Round 2 of the NIST Post-Quantum standardization process.

Part II New Constructions Supporting Advanced Functionalities

In this part, we propose new constructions stemming from public-coin protocols. Although
non-interactive proofs, identifications, and signatures are the applications most typically
appearing in real world systems, the power of public-coin protocols is not limited to these
basic primitives. For example, what if you would like to distribute the task of signing to
multiple computers in such a way that it is infeasible to produce a legitimate signature
without everyone’s contribution? A so-called multi-party distributed signature offers a
solution to this scenario. This advanced functionality should introduce some useful buffer in
case of key theft. Clearly, the attacker against usual signatures can completely compromise
security by corrupting one single signer, whereas this is not the case anymore against
multi-party signatures thanks to the ability to distribute trust. Multi-party signatures have
been studied for a long time in the literature, taking several different forms depending on
the purpose and security model, e.g., threshold signatures, multi-signatures, etc. Perhaps
motivated by new use cases, such as distributed wallets for cryptocurrencies, the study of
Fiat-Shamir-based interactive multi-party signatures is an active research area in recent
years [MPSW19, DEF+19, NRS21, AB21, BD21, KG20, GKMN21, KMOS21]. However,
the majority of these schemes are Schnorr-based and thereby do not withstand the celebrated
polynomial-time algorithm of Shor [Sho94].

Public-coin proofs are also known to be useful for adding verifiability to encryption
schemes. Say you as a cloud service administrator want to audit certain encryption
operations performed by your cloud systems, e.g., think of the situation where some secret
signing key must be securely exported from one cloud instance to another via public-key
encryption, while the secret itself is not to be exposed outside the trust boundary of cloud
services. This can be naïvely achieved via general-purpose proof systems: the sender just
produces a ZKPoK of the secret w (i.e., a witness), and the administrator verifies a proof to
be convinced that a ciphertext c is produced via correct computation of Enc(w) and that the
preimage w indeed corresponds to the public signature verification key x (i.e., a statement).
However, whether one can efficiently instantiate such ZKPoK highly depends on particulars
of the encryption function, and straightforward application of general-purpose ZKPoK
tends to get expensive if the function Enc() internally performs mixed arithmetic operations
(e.g., hashing) and algebraic computations (e.g., scalar multiplication over an elliptic curve).

1.3. OVERVIEW OF THESIS 13

This is why several previous works presented verifiable encryption [Sta96, CD00, CS03,
LN17, LCKO19], a tailor-made primitive more effectively combining specific encryption
schemes and proof systems, rather than relying on a monolithic ZKPoK to prove everything
in one go. The motivation is somewhat analogous to commit-and-prove frameworks of
[CGM16, AGM18, BHH+19, CFQ19, CFF+21, ABC+22] that combine different ZK proof
systems depending on the nuances of a computation, but not many generic methods are
known in context of verifiable encryption.

Motivated by these scenarios, the following chapters propose novel constructions
supporting advanced functionalities.

Chapter 4 Two-Round Multi-Party Signing from Lattices

This chapter is based on [DOTT22], which is a journal version of [DOTT21] and one of
the invited papers from PKC 2021. To avoid redundancy, appendices and security proof
for the two-round multi-signature scheme are deferred to the full version [DOTT20].

[DOTT21] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-
out-of-n and multi-signatures and trapdoor commitment from lattices. In PKC 2021,
Part I, vol. 12710 of LNCS, pp. 99–130. Springer, Heidelberg, 2021. DOI: 10.1007/
978-3-030-75245-3_5

[DOTT22] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round
n-out-of-n and multi-signatures and trapdoor commitment from lattices. J. Cryptol.,
35(14), 2022. DOI: 10.1007/s00145-022-09425-3
[DOTT20] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round
n-out-of-n and multi-signatures and trapdoor commitment from lattices. Cryptology
ePrint Archive, Report 2020/1110, Full version. Available at https://eprint.iacr.
org/2020/1110.pdf

Background Although fairly efficient, most recent multi-party Fiat-Shamir signatures
are based on Schnorr and thereby are not post-quantum secure. At a high-level all these
schemes essentially exploit homomorphism of the Schnorr proofs: 1) each party i owning
ski ∈ Zq announces the first “commit” message ai = gri , 2) computes the product a = ∏

i ai
on receiving other parties’ commit messages, 3) derives challenge e = H(pk, a,m), 4)
computes the response zi = ri + e · ski mod q, and 5) outputs a and z = ∑

i zi mod q as a
signature. Clearly, such a signature can be verified with a combined public key pk = ∏

i g
ski

using the usual Schnorr verification algorithm.
A natural way to adapt this idea in the post-quantum setting would be to extend the Fiat–

Shamir with Aborts (FSwA) lattice-based proofs and signatures due to Lyubashevsky [Lyu09,
Lyu12]. The paradigm shares its basic structure with Schnorr’s Σ-protocol, with the
important difference that the prover may abort the protocol after seeing the challenge,
resulting in a significant reduction of proof/signature size. Several previous works in fact
proposed FSwA distributed multi-party signing following Schnorr-based constructions.
However, these protocols involve at least three rounds of interaction among signers as
opposed to two as in the above basic Schnorr-based scheme. Moreover, due to subtle
technical issues caused by aborts they either require non-standard hardness assumptions
or lack complete security proofs.

https://dx.doi.org/10.1007/978-3-030-75245-3_5
https://dx.doi.org/10.1007/978-3-030-75245-3_5
https://dx.doi.org/10.1007/s00145-022-09425-3
https://eprint.iacr.org/2020/1110.pdf
https://eprint.iacr.org/2020/1110.pdf

14 CHAPTER 1. INTRODUCTION

Contribution The chapter comprises new multi-party, distributed signing protocols in the
random oracle model relying on standard lattice-based hardness assumptions. We study
two similar classes of distributed signing, namely, n-out-of-n signature and multi-signature,
both of which allow a group of signers to jointly produce a single signature on the same
message. We realize relatively simple lattice-based protocols by carefully lifting several
existing tricks known in the discrete log setting into the lattice world. Our approach
makes use of lattice-based homomorphic commitments both to reach near-optimal round
complexity and to fully circumvent the technical issues inherent in security proof for FSwA
multi-party signatures. This allows us to describe the first two-round protocols whose
security can be formally reduced to the hardness of short integer solution (SIS) and learning
with errors (LWE) problems.

Chapter 5 Verifiable Encryption from MPC-in-the-Head

This chapter is based on the main body of a manuscript currently in submission. Sec-
tion 5.1.2 has been replaced with a more exhaustive survey of related work and appendices
are deferred to the following full version.

[TZ21] A. Takahashi and G. Zaverucha. Verifiable encryption from MPC-in-the-Head.
Cryptology ePrint Archive, Report 2021/1704, https://eprint.iacr.org/2021/
1704.pdf

Background Verifiable encryption (VE) is a protocol where one can provide assurance that
an encrypted plaintext satisfies certain properties or relations. Similar to proof systems VE
protocols involve a prover P and a verifier V , and in addition a receiver R. A VE receiver
R generates a key pair (pk, sk) for some public key encryption scheme and publishes pk.
A prover P encrypts a plaintext (or witness) w using pk to ciphertext c and interacts
with V to convince him/her that c correctly decrypts to a right witness corresponding
to some public statement x. Security requirements for VE roughly say that R be able
to recover a right witness as long as V outputs 1, whereas V without the knowledge of
decryption key learns nothing about the encrypted plaintext. It is an important building
block in cryptography with many useful applications, such as key escrow, group signatures,
optimistic fair exchange, and others.

Although several VE constructions exist in the literature, the majority of them are
either restricted to instantiation with specific public-key encryption schemes or relations,
for which efficient “zero knowledge proof of plaintext knowledge” exist. On the other
hand, the only generic construction of VE supporting any public-key encryption schemes
dates back to Camenisch and Damgård [CD00]. Roughly, their protocol proceeds as
follows: P(pk, x, w) and V(pk, x) execute a Σ-protocol with {0, 1}-challenge for particular
relation of interest, except that P now additionally sends ce = Enc(pk, ze) in the first flow
for both e ∈ {0, 1} and opens one of the responses with the corresponding encryption
randomness during the third flow. The receiver R then gets the entire transcript, decrypts
the remaining ciphertext, and recovers a witness by exploiting special soundness of the
Σ-protocol. However, their approach may not be satisfactory for some scenarios in that
1) it is limited to Σ-protocols with 1-bit challenge space, which do not necessarily cover
modern, efficient proof systems, and 2) the analysis lacks effects of decryption failure,
which is becoming relevant due to many post-quantum encryption schemes with imperfect
correctness, such as ones based on lattices.

https://eprint.iacr.org/2021/1704.pdf
https://eprint.iacr.org/2021/1704.pdf

1.4. OTHER PUBLICATIONS 15

Contributions In this work, we propose a novel framework that realizes VE protocols
using zero-knowledge proof systems based on the MPC-in-the-head paradigm [IKOS07].
We describe a generic compiler turning a large class of MPC-in-the-head proofs into
secure VE protocols for any secure public-key encryption scheme, including ones with
imperfect correctness. As in [CD00], our approach completely circumvents proof of plaintext
knowledge and thus the work of the prover can be focused on proving the encrypted data
satisfies the relation. We further show that our compiler is compatible with several
efficient MPC-in-the-head proofs that do not fall into the category of Σ-protocols. Our
VE constructions can be made non-interactive in the random oracle model via the usual
Fiat-Shamir transform. As concrete applications we describe new approaches to verifiably
encrypting discrete logarithms in any prime order group and AES private keys.

1.4 Other Publications
The author has contributed to the following results which are not included in this thesis.
[TTA18a], [TT19], [ABE+21], and [GOP+22] are in the domain of advanced security
analysis of existing schemes, whereas [ABC+22], [EFG+22], and [BTT22] propose new
constructions.

1.4.1 Space Optimization of Bleichenbacher’s Attack

[TTA18a] A. Takahashi, M. Tibouchi, and M. Abe. New Bleichenbacher Records:
Fault Attacks on qDSA Signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):331–371, 2018. DOI: 10.13154/tches.v2018.i3.331-371, Full version
available at https://eprint.iacr.org/2018/396.pdf

1.4.2 Fault Attacks on Elliptic Curve Cryptography

[TT19] A. Takahashi and M. Tibouchi. Degenerate fault attacks on elliptic curve
parameters in OpenSSL. In IEEE EuroS&P 2019, pp. 371–386. IEEE, 2019. DOI: 10.
1109/EuroSP.2019.00035, Full version available at https://eprint.iacr.org/
2019/400.pdf

1.4.3 Side-channel Attacks on MPC-in-the-Head Signatures and
Countermeasures

[ABE+21] D. F. Aranha, S. Berndt, T. Eisenbarth, O. Seker, A. Takahashi, L. Wilke,
and G. Zaverucha. Side-channel protections for Picnic signatures. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2021(4):239–282, 2021. DOI: 10.46586/tches.v2021.
i4.239-282, Full version available at https://eprint.iacr.org/2021/735.pdf.
Preliminary version appeared at the 3rd NIST PQC Standardization Conference

1.4.4 Compiler for Commit-and-Prove SNARKs

[ABC+22] D. F. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi,
and A. Takahashi. ECLIPSE: Enhanced Compiling Method for Pedersen-Committed
zkSNARK Engines. In PKC 2022, vol. 13177 of LNCS, pp. 584–614. Springer, 2022.
DOI: 10.1007/978-3-030-97121-2_21, Full version available at https://eprint.
iacr.org/2021/934.pdf

https://dx.doi.org/10.13154/tches.v2018.i3.331-371
https://eprint.iacr.org/2018/396.pdf
https://dx.doi.org/10.1109/EuroSP.2019.00035
https://dx.doi.org/10.1109/EuroSP.2019.00035
https://eprint.iacr.org/2019/400.pdf
https://eprint.iacr.org/2019/400.pdf
https://dx.doi.org/10.46586/tches.v2021.i4.239-282
https://dx.doi.org/10.46586/tches.v2021.i4.239-282
https://eprint.iacr.org/2021/735.pdf
https://dx.doi.org/10.1007/978-3-030-97121-2_21
https://eprint.iacr.org/2021/934.pdf
https://eprint.iacr.org/2021/934.pdf

16 CHAPTER 1. INTRODUCTION

1.4.5 Non-malleability of Fiat-Shamir Proof Systems

[GOP+22] C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi.
Fiat-Shamir Bulletproofs are Non-Malleable (in the Algebraic Group Model). In
EUROCRYPT 2022, vol. 13276 of LNCS, pp. 397–426. Springer, 2022. DOI: 10.
1007/978-3-031-07085-3_14, Full version available at https://eprint.iacr.org/
2021/1393.pdf

1.4.6 Better Hash-and-Sign Signatures from Lattices

[EFG+22] T. Espitau, P. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi,
A. Wallet, and Y. Yu. Mitaka: A simpler, parallelizable, maskable variant of Falcon.
In EUROCRYPT 2022, vol. 13277 of LNCS, pp. 222–253. Springer, 2022. DOI: 10.
1007/978-3-031-07082-2_9, Full version available at https://eprint.iacr.org/
2021/1486.pdf. Preliminary version appeared at the 3rd NIST PQC Standardization
Conference

1.4.7 Offline-Online Multi-Signature from Lattices

[BTT22] C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In CRYPTO 2022, LNCS. Springer, To
appear

https://dx.doi.org/10.1007/978-3-031-07085-3_14
https://dx.doi.org/10.1007/978-3-031-07085-3_14
https://eprint.iacr.org/2021/1393.pdf
https://eprint.iacr.org/2021/1393.pdf
https://dx.doi.org/10.1007/978-3-031-07082-2_9
https://dx.doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2021/1486.pdf
https://eprint.iacr.org/2021/1486.pdf

Part I

Advanced Security Analysis

17

Chapter 2

LadderLeak

2.1 Introduction

The ECDSA algorithm is one of the most widely deployed signature schemes today, and is
part of many practical cryptographic protocols such as TLS and SSH. Its signing operation
relies on an ephemeral random value called nonce, which is particularly sensitive: it is
crucial to make sure that the nonces are kept in secret and sampled from the uniform
distribution over a certain integer interval. It is easy to see that if the nonce is exposed or
reused completely, then an attacker is able to extract the secret signing key by observing
only a few signatures. By extending this simple observation, cryptanalysts have discovered
stronger attacks that make it possible to recover the secret key even if short bit substrings
of the nonces are leaked or biased. These extended attacks relate key recovery to the
so-called hidden number problem (HNP) of Boneh and Venkatesan [BV96], and are part
of a line of research initiated by Howgrave-Graham and Smart [HGS01], who described a
lattice-based attack to solve the corresponding problem, and Bleichenbacher [Ble00], who
proposed a Fourier analysis-based approach.

Lattice-based attacks are known to perform very efficiently when sufficiently long
substrings of the nonces are known to the attacker (say over 4 bits for signatures on a
256-bit elliptic curve, and at least 2 bits for a 160-bit curve). As a result, a number of
previous works adapted Howgrave-Graham and Smart’s technique to practically break
vulnerable implementations of ECDSA and related schemes like Schnorr signatures [Sch90],
for instance by combining it with side-channel analysis on the nonces (see related works in
Section 2.2.4). However, a limitation of lattice-based attacks is that they become essentially
inapplicable when only a very small fraction of the nonce is known for each input sample.
In particular, for a single-bit nonce leakage, it is believed that they should fail with high
probability, since the lattice vector corresponding to the secret is no longer expected to
be significantly shorter than other vectors in the lattice [NT12, AFG+14]. In addition,
lattice-based approaches assume that inputs are perfectly correct, and behave very poorly
in the presence of erroneous leakage information.

In contrast, Bleichenbacher’s Fourier analysis-based attack can in principle tackle
arbitrarily small nonce biases, and handles erroneous inputs out of the box, so to speak.
Despite those features, it has garnered far less attention from the community than lattice-
based approaches, perhaps in part due to the lack of formal publications describing the
attack until recently (even though some attack records were announced publicly [Ble05]). It
was only in 2013 that De Mulder et al. [DHMP13] revisited the theory of Bleichenbacher’s

19

20 CHAPTER 2. LADDERLEAK

Table 2.1: Comparison with the previous records of solutions to the hidden number problem
with small nonce leakages. Each row corresponds to the size of group order in which the
problem is instantiated. Each column corresponds to the maximum number of leaked nonce
bits per signature. Citations in green (resp. purple) use Bleichenbacher’s approach (resp.
lattice attacks).

< 1 1 2 3 4
256-bit – – [TTA18a] [TTA18a] [Rya18, Rya19, MSEH20, WSBS20]
192-bit This work This work – – –
160-bit This work [AFG+14, Ble05], this work (less data) [Ble00], [LN13] [NS02] –

approach in a formally published scholarly publication, followed soon after by Aranha et
al. [AFG+14], who overcame the 1-bit “lattice barrier” by breaking 160-bit ECDSA with
a single bit of nonce bias. Takahashi, Tibouchi and Abe [TTA18a] improved the space
complexity of Bleichenbacher’s attack and broke qDSA [RS17] (a variant of Schnorr) with
2-bit nonce leaks. However, the practicality of these works may seem limited: indeed, De
Mulder et al. attacked parameters (i.e. 384-bit with 5-bit bias) that can be solved more
efficiently by lattice attacks; Aranha et al. required over 8 billion signatures as input; and
Takahashi et al. only mounted the attack by artificially injecting physical faults into the
modified, non-standard implementation.

In this work, we present the first real-world ECDSA vulnerabilities that are not
susceptible to lattice attacks, but become practically exploitable with the Fourier analysis
method, thanks to novel theoretical improvements that we propose over existing literature.

2.1.1 Contributions

New Cache Timing Attacks Against OpenSSL Montgomery Ladder We first
propose LadderLeak, a new class of vulnerabilities lurking in scalar multiplication algorithms
invoked by ECDSA. Our attack exploits small timing differences within the implementations
of Montgomery ladder [Mon87] relying on inappropriate coordinate handling, and allows the
attacker to learn a single-bit of the secret scalar (which corresponds to nonces in ECDSA)
with high probability. We discovered LadderLeak vulnerabilities in several versions of
OpenSSL (particularly in the 1.0.2 and 1.1.0 branches), and in version 0.4.0 of RELIC
toolkit [A+]. We present two attack flavors: one for binary curves and the other for prime
curves. Both have been experimentally validated, and provide high-precision distinguishers
for ECDSA nonces in our target versions of OpenSSL. In principle, the vulnerability affects
various curve parameters in the above implementations, including NIST P-192, P-224,
P-256, P-384, P-521, B-283, K-283, K-409, B-571, sect163r1, secp192k1, secp256k1 1.
In Section 2.3 we describe the attack idea, as well as concrete side-channel experiments
carried out using Flush+Reload cache timing attacks [YF14]. As concrete targets we
choose ECDSA instantiated over NIST P-192 and sect163r1, and successfully retrieve
1-bit of nonce information with high probability.

1OpenSSL does not invoke the vulnerable ladder implementation for P-256 by default and relies instead
on custom code enabled during compilation. Custom code can also be similarly enabled at build time for
P-224 and P-521 with the switch enable-ec_nistp_64_gcc_128 (see https://wiki.openssl.org/index.
php/Compilation_and_Installation#Configure_Options). We thank an anonymous reviewer for pointing
out these behaviors of OpenSSL.

https://wiki.openssl.org/index.php/Compilation_and_Installation#Configure_Options
https://wiki.openssl.org/index.php/Compilation_and_Installation#Configure_Options

2.1. INTRODUCTION 21

Improved Theoretical Analysis of Bleichenbacher’s Solution to the HNP In
Section 2.4 we establish a unified time–space–data tradeoff formula for Bleichenbacher style
attacks, and use it to concretely find optimal attack parameter choices for a given group
size and a given amount of nonce bias. Our formula relies on the connection between the
hidden number problem on the one hand and the K-list sum problem on the other (the
latter of which is a sub-problem of Wagner’s generalized birthday problem (GBP) [Wag02],
particularly well-known in symmetric key cryptology). Our approach is generic, allowing to
integrate in principle any K-list integer sum algorithms to derive a similar tradeoff formula.
Although Bleichenbacher’s method was thought to require billions of signatures as input
to attack 1-bit of nonce leakage, we prove that it is possible to significantly reduce the
data complexity by carefully choosing the inputs to our tradeoff formula. Our analysis
also provides significant improvements to the data complexity for leaks of more than 1 bit,
allowing the side-channel attacker to recover the ECDSA key given only several thousands
signatures in many cases, or even several hundreds in some scenarios. The complete
complexity estimates given in [ANT+20b] may therefore be of independent interest. We
further incorporate the effect of misdetection in the most significant bit of the HNP samples,
which becomes crucial when combining with the practical side-channel leakage we consider.
Optimized Implementation and New Attack Records for the HNP Putting both
contributions together, we mount a full signing key recovery attack on ECDSA signatures
instantiated over the sect163r1 binary curve and over the NIST P-192 prime curve,
using less than 1 bit of nonce leakage (in the sense that we recover 1 bit of the nonces,
but with probability less than 1). The tradeoff formula we develop allows us to break
the corresponding HNP instances with realistic computational resources. In our attack
experiments, presented in Section 2.5, the data complexity required for the former case is
significantly less than Aranha et al. [AFG+14], by a factor of around 210. Furthermore,
to the best of our knowledge, 192-bit ECDSA has never been broken before with 1 bit
of leakage or less (see Table 2.1 for the comparison with previous HNP records), and
our concrete attack therefore marks a dramatic advance in concrete attacks on the HNP.
This was made possible by tuning the tradeoffs to optimize the time complexity and by
running our highly optimized scalable implementation in Amazon Web Service (AWS) EC2
cloud instances. The approach and implementation devised in this work can be applied to
various types of leakage from ECDSA independent of the LadderLeak vulnerability, and
hence offer an interesting avenue for future cryptanalytic work. For example, our empirical
results also indicate that breaking larger instances like P-224 with 1-bit leak, or P-256
with 2-bit leak would be practically doable with relatively modest data complexity. The
experimental results regarding cache attacks, submitted patches with countermeasures,
tradeoff formula solver, and optimized implementation of Bleichenbacher’s attack are
available in our GitHub repository2.

2.1.2 Vulnerable Software Versions and Coordinated Disclosure

In December 2019, we originally reported to the OpenSSL development team the vulnera-
bilities in versions 1.0.2t and 1.0.1l in accordance with the OpenSSL security policy3

before the end of long-term support for those versions. After version 1.0.2u was released,
we confirmed that the same vulnerabilities were still present, and hence we proposed a

2https://github.com/akiratk0355/ladderleak-attack-ecdsa
3https://www.openssl.org/policies/secpolicy.html

https://github.com/akiratk0355/ladderleak-attack-ecdsa
https://www.openssl.org/policies/secpolicy.html

22 CHAPTER 2. LADDERLEAK

patch with corresponding countermeasures, which has already been approved4. Although
the 1.0.2 branch is now out of public support as of May 2020, the OpenSSL development
team still provides its customers with an extended support for 1.0.2 and our patch is
included in their further internal releases. While it is hard to estimate how the vulnerability
would affect real products due to the lack of public releases containing the patch, searching
over GitHub revealed several projects updating their build process to take into account
a new release from the 1.0.2 branch. Similar steps have also been taken to address the
vulnerability in RELIC, and a fix was pushed in January 2020.

2.2 Preliminaries

Notations We denote the imaginary unit by roman i. For any positive integer x a function
MSBn(x) returns its most significant n bits. When a and b are integers such that a < b we
use the integer interval notation [a, b] to indicate {a, a+ 1, . . . , b}. Throughout the paper
log c denotes the binary logarithm of c > 0.

2.2.1 Cache Attacks

To deliver the high performance expected of modern computers, processors employ an
array of techniques that aim to predict program behavior and optimize the processor for
such behavior. As a direct consequence, program execution affects the internal state of
the processor, which in turn affects the speed of future program execution. Thus, by
monitoring its own performance, a program can learn about execution patterns of other
programs, creating an unintended and unmonitored communication channel [GYCH18].

Unintended leakage of cryptographic software execution patterns can have a devastating
impact on the security of the implementation. Over the years, multiple attacks have
demonstrated complete key recovery, exploiting leakage through the internal state of various
microarchitectural components, including caches [TTMH02, OST06, ABG10, LYG+15],
branch predictors [AGS07, LSG+17], functional units [ABuH+19, AS07], and translation
tables [GRBG18].

Flush+Reload [GBK11, YF14] is a prominent attack strategy, in which the attacker
monitors victim access to a memory location. The attack consists of two steps. In the
flush step, the attacker evicts the monitored memory location from memory, typically
using a dedicated instruction such as clflush. The attacker then waits a bit to allow
the victim time to execute. Finally, in the reload step, the attacker accesses the memory
location, while measuring how long the access takes. If the victim has not accessed the
monitored location, it will remain uncached, and access will be slow. Conversely, if the
victim has accessed the monitored location between the flush and the reload steps, the
memory location will be cached, and access will be fast. Repeating the attack, an attacker
can recover the memory usage patterns of the victim, allowing attacks on symmetric
ciphers [GBK11, IAIES14], public key primitives, both traditional [YF14, GB17, BBG+17]
and post-quantum [BHLY16, PBY17], as well as on non-cryptographic software [GSM15,
YFT20].

4https://github.com/openssl/openssl/pull/11361

https://github.com/openssl/openssl/pull/11361

2.2. PRELIMINARIES 23

2.2.2 The Montgomery Ladder and its Secure Implementation

An elliptic curve E defined over a finite field F is the set of solutions (x, y) ∈ F that
satisfy the curve equation, together with a point at infinity O. The chord-and-tangent
rule defines a group law (⊕) for adding and doubling points on the curve, with O the
identity element. Given P ∈ E(F) and k ∈ Z, the scalar multiplication operation computes
R = [k]P , which corresponds to adding P to itself (k − 1) times. Cryptographic protocols
rely on multiplication by a secret scalar as a fundamental operation to base security on
the Elliptic Curve Discrete Logarithm Problem (ECDLP): find k given inputs (P, [k]P).
Concrete instances of elliptic curves used in cryptography employ a subgroup of points of
large prime order q for which the ECDLP is known to be hard. For efficiency reasons, it is
common to represent points in projective coordinates (X,Y, Z) and avoid the computation
of expensive field inversions during the evaluation of the group law.

In many settings, an adversary able to recover leakage from the scalar multiplication
operation, in particular bits of the scalar, can substantially reduce the effort necessary to
solve the ECDLP. The Montgomery ladder, which was initially proposed for accelerating
the ECM factorization method [Mon87], later became crucial for secure implementations of
elliptic curve cryptography due to its inherent regularity in the way the scalar is processed:
the same number of group operations is required no matter the bit pattern of k. Algorithm 1
illustrates the idea. There is a rich literature about coordinate systems and elliptic curve
models for securely implementing the algorithm [CS18, OLR18]. Unfortunately, these
techniques do not always work for the standardized curves in the Weierstrass model that
greatly contributed to the adoption of elliptic curves in industry through the SECG and
NIST standards [KKM08].

A constant-time implementation of the Montgomery ladder protected against timing
attacks must satisfy three basic preconditions: (i) the number of loop iterations must
be fixed; (ii) memory operations cannot depend on bits of the secret scalar, to avoid
leakage through the memory hierarchy; (iii) the group law must be evaluated with the
same number and type of field operations in the same order, independently of the bits
of the scalar. The first is easier to guarantee, by conditionally adding q or 2q until the
resulting scalar k̂ has fixed length. Note that this approach has the interesting side-effect
of preserving the MSB of k in the second MSB of k̂ when q is just below a power of 2.
The second can be achieved by simply replacing branches with conditional operations to
swap the accumulators (R0, R1). The third is more involved, but greatly simplified by
complete addition laws that compute the correct result for all possible inputs [BL07] (even
when the point is being doubled) without any exceptions or corner cases. While complete
addition laws for Weierstrass curves do exist [RCB16], they incur a substantial performance
penalty and have not been popularized enough for current implementations of classical
standardized curves. A version of the algorithm with these countermeasures applied can be
found in [ANT+20b]. As we further discuss in Section 2.3, attempts to improve side-channel
security of current implementations of scalar multiplication risk retrofitting an otherwise
constant-time Montgomery ladder on top of a group law implementation that still leaks
information through optimizations.

2.2.3 ECDSA and Hidden Number Problem with Erroneous Input

The signing key extraction from the nonce leakages in ECDSA signatures typically amounts
to solving the so-called hidden number problem (HNP). We present a generalized variant

24 CHAPTER 2. LADDERLEAK

Algorithm 1 Montgomery ladder
Require: k ∈ Zq, point P on E(F).
Output: The results of the scalar multiplication R = [k]P .
1: (R0, R1)← (P, 2P)
2: for i = blg(k)c − 1 downto 0 do
3: if ki = 0 then
4: (R0, R1)← ([2]R0, R0 ⊕R1)
5: else
6: (R0, R1)← (R0 ⊕R1, [2]R1)
7: end if
8: end for
9: return R0

Algorithm 2 ECDSA signature generation
Require: Signing key sk ∈ Zq, message msg ∈ {0, 1}∗, group order q, base point G, and

cryptographic hash function H : {0, 1}∗ → Zq.
Output: A valid signature (r, s)
1: k $← Zq
2: R = (rx, ry)← [k]G; r ← rx mod q
3: s← (H(msg) + r · sk)/k mod q
4: return (r, s)

of the original HNP by Boneh and Venkatesan [BV96], incorporating some erroneous
information of the most significant bits. In particular, the error distribution below models
the attacker’s misdetection during the side-channel acquisition.

Definition 2.1 (Hidden Number Problem with Erroneous Input). Let q be a prime and
sk ∈ Zq be a secret. Let hi and ki be uniformly random elements in Zq for each i = 1, . . . ,M
and define zi = ki − hi · sk mod q. Suppose some fixed distribution χb on {0, 1}b for b > 0
and define a probabilistic algorithm EMSBχb(x) which returns MSBb(x)⊕ e for some error bit
string e sampled from χb. Given (hi, zi) and EMSBχb(ki) for i = i, . . . ,M , the HNP with
error distribution χb asks one to find sk.

In our concrete attacks against OpenSSL ECDSA, we focus on the case where b = 1
and χb is the Bernoulli distribution Bε for some error rate parameter ε ∈ [0, 1/2], i.e.
EMSBχb(x) simply returns the negation of the most significant bit of x with probability ε,
and otherwise returns the correct bit.

A straightforward calculation shows that a set of ECDSA signatures with leaky nonces
is indeed an instance of the HNP. Notice that the ECDSA signature (r, s) generated as
in Algorithm 2 satisfies s = (H(msg) + r · sk)/k mod q for uniformly chosen k ∈ Zq.
Rearranging the terms, we get

H(msg)/s = k − (r/s) · sk mod q.

Hence letting z = H(msg)/s mod q and h = r/s mod q, we obtain a HNP sample if the
MSB of k is leaked with some probability.

2.2. PRELIMINARIES 25

2.2.4 Lattice Attacks on HNP

Boneh and Venkatesan [BV96] suggest solving the Hidden Number Problem by first reducing
it to the lattice Closest Vector Problem (CVP). Howgrave-Graham and Smart [HGS01]
show the reduction of partial nonce leakage from DSA to HNP, which they solve by
reduction to CVP. Nguyen and Shparlinski [NS02] prove that the Howgrave-Graham and
Smart approach works with a leak of log log q bits from a polynomial number of ephemeral
keys. They later extend the result to ECDSA [NS03].

Brumley and Tuveri [BT11] demonstrate a timing attack on OpenSSH acquiring a
small number of bits from the ephemeral keys. Following works present electromagnetic
emanation [GPP+16, BFMT16], cache [BvSY14, vSY15, ABF+16, GB17] and other mi-
croarchitectural [ABuH+19] attacks, all use a conversion of HNP to a lattice problem. Dall
et al. [DDE+18] explore the viability of solving HNP with errors using a lattice attack.
One of the main target curves in our work is NIST P-192, which was also exploited by
Medwed and Oswald [MO09] using several bits of nonce acquired via template-based SPA
attacks.

2.2.5 Bleichenbacher’s Attack Framework

The Fourier analysis-based approach to the HNP was first proposed by Bleichenbacher [Ble00]
and it has been used to break ECDSA, Schnorr and variants with small nonce leakages that
are hard to exploit with the lattice-based method [AFG+14, DHMP14, TTA18a]. This
section covers the fundamentals of Bleichenbacher’s framework, summarized in Algorithm 3.
For more theoretical details we refer to the aforementioned previous works. The essential
idea of the method is to quantify the modular bias of nonce k using the bias functions in
the form of inverse discrete Fourier transform (iDFT).

Definition 2.2 (Bias Functions). Let K be a random variable over Zq. The modular bias
Bq(K) is defined as

Bq(K) = E[e(2πK/q)i]

where E(K) represents the mean and i is the imaginary unit. Likewise, the sampled bias
of a set of points K = {ki}Mi=1 in Zq is defined by

Bq(K) = 1
M

M∑
i=1

e(2πki/q)i.

When the l MSBs of K are fixed to some constant and K is otherwise uniform modulo
q, then it is known that the norm of bias |Bq(K)| converges to 2l · sin(π/2l)/π for large
q [TTA18a, Corollary 1]. The estimate holds for the sampled bias Bq(K) as well for a given
set of biased nonces {ki}Mi=1. For example, if the first MSB of each ki is fixed to a constant
bit then the bias is estimated as |Bq(K)| ≈ 2/π ≈ 0.637. Moreover, if the ki’s follow the
uniform distribution over Zq then the mean of the norm of sampled bias is estimated as
1/
√
M , which is a direct consequence of the well-known fact about average distance from

the origin for a random walk on the complex plane [AFG+14].
Small linear combinations Given such a function, it would be straightforward to come
up with a naive approach to find sk: for each candidate secret key w ∈ Zq, compute the
corresponding set of candidate nonces Kw = {zi + hiw mod q}Mi=1 and then conclude that

26 CHAPTER 2. LADDERLEAK

Algorithm 3 Bleichenbacher’s attack framework
Require:
{(hi, zi)}Mi=1 - HNP samples over Zq.
M ′ - Number of linear combinations to be found.
LFFT - FFT table size.

Output: Most significant bits of sk
1: Collision search
2: Generate M ′ samples {(h′j , z′j)}M

′
j=1, where (h′j , z′j) = (∑i ωi,jhi,

∑
i ωi,jzi) is a pair of

linear combinations with the coefficients ωi,j ∈ {−1, 0, 1}, such that for j ∈ [1,M ′]
1. Small: 0 ≤ h′j < LFFT and

2. Sparse: |Bq(K)|Ωj � 1/
√
M ′ for all j ∈ [1,M ′], where Ωj := ∑

i |ωi,j |.
3: Bias Computation
4: Z := (Z0, . . . , ZLFFT−1)← (0, . . . , 0)
5: for j = 1 to M ′ do
6: Zh′j ← Zh′j + e(2πz′j/q)i

7: end for
8: {Bq(Kwi)}

LFFT−1
i=0 ← FFT(Z), where wi = iq/LFFT.

9: Find the value i such that |Bq(Kwi)| is maximal.
10: Output most significant logLFFT bits of wi.

w = sk if the sampled bias |Bq(Kw)| shows a peak value. This is of course no better than
the exhaustive search over the entire Zq. To avoid this issue, the so-called collision search
of input samples is required, which is the crucial preliminary step to expand the peak
width. De Mulder et al. [DHMP14] and Aranha et al. [AFG+14] showed that the peak
width broadens to approximately q/LFFT, by taking linear combinations of input samples
{(hi, zi)}Mi=1 to generate new samples {(h′j , z′j)}M

′
j=1 such that h′j < LFFT. This way, one

could hit somewhere in the broadened peak by only checking the sampled biases at LFFT
candidate points over Zq. As the inverse DFT at LFFT points can be efficiently computed
by fast Fourier transform (FFT) algorithms in O(LFFT logLFFT) time and O(LFFT) space,
the first goal of the collision search phase is to find sufficiently small linear combinations of
the samples so that the FFT on the table of size LFFT becomes practically computable. A
few different approaches have been explored to the collision search phase, such as lattice
reduction [DHMP14], sort-and-difference [AFG+14] and 4-list sum algorithm [TTA18a].

Sparse linear combinations One may be tempted to repeat such collision search op-
erations as many times as needed until the linear combinations with the desired upper
bound are observed. However, the linear combinations come at a price; in exchange of
the broader peak width, the peak height gets reduced exponentially. Concretely, if the
original modular bias of nonce is |Bq(K)| and all coefficients in the linear combinations are
restricted to {−1, 0, 1} then the peak bias gets exponentiated by L1-norm of the coefficient
vector [TTA18a]. Thus, for the peak height to be distinguishable from the noise value
the diminished peak should be significantly larger than the noise value (which is 1/

√
M ′

on average as mentioned above). This imposes another constraint on the collision search
phase: the sparsity of linear combinations. In summary, the efficiency of Bleichenbacher’s
attack crucially relies upon the complexities of small and sparse linear combination search
algorithm.

2.3. TIMING ATTACKS ON MONTGOMERY LADDER 27

Algorithm 4 Parameterized 4-list sum algorithm based on Howgrave–Graham–Joux [HJ10]
Require:
{Li}4i=1 - Sorted lists of 2a uniform random `-bit samples.
n - Number of nullified top bits per each round.
v ∈ [0, a] - Parameter.

Output: L′ - List of (`− n)-bit samples.
1. For each c ∈ [0, 2v) :

a. Look for pairs (x1, x2) ∈ L1 × L2 such that MSBa(x1 + x2) = c. Store the
expected number of 22a−a = 2a output sums x1 + x2 in a new sorted list L′1.
Do the same for L3 and L4 to build the sorted list L′2.

b. Look for pairs (x′1, x′2) ∈ L′1 × L′2 such that MSBn(|x′1 − x′2|) = 0. Store the
expected number of 22a−(n−a) = 23a−n output sums |x′1 − x′2| in the list L′.

2. Output L′ of the expected length M ′ = 23a+v−n

2.2.6 K-list Sum Problem

We introduce a variant of the K-list sum problem [Din19] (a sub-problem of GBP [Wag02])
instantiated over the integers. The latter part of the paper discusses the connection between
this problem and Bleichenbacher’s framework.

Definition 2.3 (K-list Sum Problem). Given K sorted lists L1, . . . ,LK, each of which
consists of 2a uniformly random `-bit integers, the K-list sum problem asks one to find a
non-empty list L′ consisting of x′ = ∑K

i=1 ωixi, where K-tuples (x1, . . . , xK) ∈ L1× . . .×LK
and (ω1, . . . , ωK) ∈ {−1, 0, 1}K satisfy MSBn(x′) = 0 for some target parameter n ≤ `.

Algorithm 4 is an instance of the K-list sum algorithm for K = 4. This is essentially
a parameterized variant of the Howgrave–Graham–Joux [HJ10], which we analyze by
extending Dinur’s framework [Din19] in Section 2.4.

2.3 Timing Attacks on Montgomery Ladder

An implementation of the Montgomery ladder must be built on top of a constant-time
implementation of the group law to enjoy its side-channel resistance guarantees. Any minor
deviation in the number of field operations or memory access pattern in the group law can
leak information about which of the two branches of a certain iteration are being evaluated,
which further leaks information about the key bit. In this work, we exploit a vulnerability
in the way the Montgomery ladder is prepared (line 1 of Algorithm 1), by observing that
implementations employing projective coordinates will have accumulators R0 in affine
coordinates in which input point P is typically given; and R1 in projective coordinates after
a point doubling is performed. This coordinate mismatch allows the attacker to mount a
cache-timing attack against the first iteration of the ladder, revealing the second MSB of
the scalar. We found the issue in the popular OpenSSL cryptographic library, and in the
research-oriented RELIC toolkit [A+], both apparently caused by attempting to implement
a constant-time ladder on top of a group law optimized for special cases. This generality
motivated us to name the discovered vulnerability under the moniker LadderLeak.

28 CHAPTER 2. LADDERLEAK

2.3.1 Cache-timing vulnerabilities in OpenSSL’s implementation

OpenSSL contains multiple implementations of the Montgomery ladder in its codebase,
depending on the choice of curve and field, so we split the discussion based on the choice
of underlying field.

Binary curves For curves defined over F2m , OpenSSL employs the well-known López-
Dahab scalar multiplication algorithm [LD99], which amounts to the Montgomery ladder
over points represented in López-Dahab coordinates (x = X/Z, y = Y/Z2). Parameters
affected are SECG curve sect163r1; and NIST curves B-283, K-283, K-409 and B-571
(i.e. binary curves with group order slightly below the power of two) in versions 1.0.2u
and 1.1.0l. The latest 1.1.1 branch is not affected due to a unified and protected
implementation of the ladder.

The Montgomery ladder is implemented in function ec_GF2m _montgomery_point
_multiply() in file crypto/ec/ec2_mult.c. The function computes scalar multiplication
[k]P for fixed-length scalar k and input point P = (x, y). The ladder starts by initializing
two points (X1, Z1) = (x, 1) and (X2, Z2) = [2]P = (x4 + b, x2). The first loop iteration
follows after a conditional swap function that exchanges these two points based on the value
of the second MSB. The first function to be called within the first iteration is gf2m_Madd()
for point addition, which starts by multiplying by value Z1. However, since the finite
field arithmetic is not implemented in constant-time for binary fields, there is a timing
difference between multiplying by (1) or (x2), since modular reduction is only needed in the
latter case. In particular, a modular reduction will be computed when Z1 = x2 after the
conditional swap. This happens when the second MSB is 1 because the conditional swap
effectively swapped the two sets of values. A cache-timing attack can then monitor when
the modular reduction code is called to reduce a non-trivial intermediate multiplication
result.

Prime curves In curves defined over Fp for large prime p, OpenSSL 1.0.2u employs the
Montgomery ladder when precomputation is turned off, a scenario prevalent in practice
since precomputation must be manually turned on for a certain point (typically a fixed
generator) [TuHGB18]. Parameters affected are NIST curves P-192, P-224, P-384 and
P-521; and SECG curves secp192k1 and secp256k1 (i.e. prime curves with group order
slightly below the power of two). Curve P-256 is affected in principle, but OpenSSL has
customized code enabled by default at build time. Note that secp256k1 refers to the curve
adopted for signing Bitcoin transactions with ECDSA.

In this case, OpenSSL implements the Montgomery ladder by using optimized formulas
for elliptic curve arithmetic in the Weierstrass model. The ladder is implemented in
ec_mul_consttime() within /crypto/ec/ec_mult.c, but which does not run in constant-
time from a cache perspective, despite the naming. The ladder starts by initializing two
accumulators R0 = P (in affine coordinates) and R1 = 2P (in projective coordinates).
The first loop iteration is non-trivial and computes a point addition and a point doubling
after a conditional swap. Depending on the key bit, the conditional swap is effective
and only one point will remain stored in projective coordinates. Both the point addition
and point doubling functions have optimizations in place for mixed addition, and the Z
coordinate of the input point can be detected for the point doubling case implemented
in function ec_GFp_simple_dbl(). When the input point for the doubling function is in
affine coordinates, a field multiplication by Z is replaced by a faster call to BN_copy().
This happens when the two accumulators are not swapped in the ladder, which means that

2.3. TIMING ATTACKS ON MONTGOMERY LADDER 29

point R0 in affine coordinates is doubled and the second MSB is 0. The timing difference
is very small, but can be detected with a cache-timing attack.

2.3.2 Implementation of the attacks

We implemented cache-timing attacks using Flush+Reload from the FR-trace program
available in the Mastik side-channel analysis toolkit [Yar16]. We targeted OpenSSL by
running the command-line signature computation in two Broadwell CPUs with models
Core i7-5500U and i7-3520M clocked at 2.4GHz and 2.9GHz, respectively, and TurboBoost
disabled. OpenSSL was built using a standard configuration with debugging symbols
and optimizations enabled. Targeted parameters were at lowest security in each class:
sect163r1 for the binary and P-192/secp192k1 for the prime case. Although the observed
timing difference was very small in both cases, we managed to amplify it using performance
degradation [ABF+16]: multiple threads running in the background penalize the targeted
pieces of code (modular reduction in the binary case and BN_copy() in the prime case) by
constantly evicting their addresses from the cache. The timing difference for computing
the first iteration of the ladder was amplified to around 100,000 and 15,000 cycles for the
binary and prime case, respectively. Amplifying the timing difference made it feasible
to detect the second MSB with high probability: around 99% for curves sect163r1 and
P-192. We configured the slot, or the time between two consecutive probings by the Flush+
Reload thread, to 5,000 cycles to obtain finer granularity.

In the binary case, the detection strategy consisted of first locating in the traces a
cache-hit matching the execution of the first field multiplication by Z1 in gf2m_Madd() at
the beginning of the first ladder iteration, and then looking for the next cache-hit matching
the second field multiplication which marks the end of the first. If the number of slots
between the two was above 15, this means a timing difference of at least 75,000 cycles.
The first version of the attack achieved 97.3% precision, which was later improved. When
running the attack against 10,000 signature computations, we were able to correctly detect
2,735 signatures with second MSB 1 and only 27 false positives, amounting to a precision
of 99.00%. Sample traces illustrating the strategy can be found in Figure 2.1.

In the prime case, the detection strategy consisted of looking for the first ladder iteration
by locating in the traces for a cache-hit matching the execution of ec_GFp_simple_dbl()
and then counting the number of consecutive cache-hits matching the execution of
BN_copy(). If the next two slots had cache-hits for the latter, this means that the
copy took around 3 slots, or 15,000 cycles. When running the attack against 10,000
signature computations, we were able to correctly detect 2,343 signatures with second
MSB 0 and only 12 false positives, amounting to a precision of 99.53%. Sample traces
illustrating the strategy can be found in Figure 2.2.

2.3.3 Translating Nonce Leakages to the Hidden Number Problem
Instance

In OpenSSL, the nonce k ∈ {1, . . . , q − 1} is rewritten to be either k̂ = k + q or k̂ = k + 2q
before passed to a scalar multiplication algorithm, so that the resulting k̂ has the fixed bit
length. This is to countermeasure the remote timing attacks of Brumley and Tuveri [BT11].
For the curves with group order slightly below the power of 2 (denoted by q = 2` − δ),
it holds that k̂ = k + q except with negligible probability. Our LadderLeak attack
detects the second MSB of k̂ and we argue that it coincides with the first MSB of k with

30 CHAPTER 2. LADDERLEAK

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for binary curve case when second MSB is 0

Call to first field mult.
Call to second field mult.

Cache hit threshold

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for binary curve case when second MSB is 1

Call to first field mult.
Call to second field mult.

Cache hit threshold

Figure 2.1: Pattern in traces collected by FR-trace for the binary curve case. Cache
accesses are considered hits when below the default threshold of 100 cycles. The cache hits
correspond to executions of the two first field multiplications inside point addition, the
first by Z1. When the second MSB is 0 and Z1 = 1 in the first trace above, there is no
modular reduction, hence the two first field multiplications in point addition quickly follow
in succession. When the second MSB is 1 and Z1 = x2 in the second trace, performance
degradation penalizes modular reduction and the time between the two field multiplications
grows much larger.

overwhelming probability. Let us denote the `-th bit of k (resp. k̂) by k` (resp. k̂`). Then
Pr[k` 6= k̂`] < Pr[k` = 0 ∧ k < δ] + Pr[k` = 1 ∧ k < δ + 2`−1] since the `-th bit of q is 1 and
k` gets flipped only if there’s no carry from the lower bits in the addition k + q. It is easy
to see that the right-hand side of the above inequality is negligibly small if δ is negligibly
smaller than q. Therefore, putting together with the usual conversion in Section 2.2.3 we
have obtained HNP instances with error rate at most ε = 0.01 for P-192 and ε = 0.027 for
sect163r1.

2.4 Improved Analysis of Bleichenbacher’s Attack

2.4.1 Unified Time–Space–Data Tradeoffs

The FFT-based approach to the HNP typically requires significant amount of input
signatures, compared to lattice-based attacks. The sort-and-difference method attempted
by Aranha et al. [AFG+14], for instance, required 233 input signatures to break 160-bit
ECDSA with 1-bit bias. We could of course take the same approach to exploit the leakage
of sect163r1 from the previous section, but collecting over 8 million signatures via cache
attacks doesn’t seem very easy in practice. Takahashi, Tibouchi and Abe [TTA18a] took
much more space-efficient approach by making use of Howgrave–Graham and Joux’s
(HGJ) knapsack solver [HJ10]. They also provide “lower bounds” for the required amount

2.4. IMPROVED ANALYSIS OF BLEICHENBACHER’S ATTACK 31

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for prime case when second MSB is 1

Call to BN_copy().
Call to next field operation

Cache hit threshold

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for prime case when second MSB is 0

Call to BN_copy().
Call to next field operation

Cache hit threshold

Figure 2.2: Pattern in traces collected by FR-trace for the prime curve case. Cache
accesses are again considered hits when below the default threshold of 100 cycles. The cache
hits correspond to the time a BN_copy() operation inside point doubling takes to complete
under performance degradation. When the second MSB is 1 in the first trace, BN_copy()
is not called inside point doubling, but the cache line containing the function call and next
field operation is brought to the cache. When the second MSB is 0, BN_copy() is actually
called and takes longer to complete due to performance degradation. The pattern is visible
between slots 20 and 30.

of input samples to attack given signature parameters and bit biases. However, their
lower bound formula implicitly relies on two artificial assumptions: (1) the number
of input and output samples, space complexity, and FFT table size are all equal (i.e.
M = M ′ = LFFT in Algorithm 3), and (2) the number of collided bits to be found by the
HGJ algorithm is fixed to some constant. Such assumptions do help stabilizing time and
space complexities throughout the entire attack, but at the same time seem to sacrifice
the true potential of applying the HGJ algorithm. In [FGMN16], Fouque et al. briefly
mentioned that an algorithm for the GBP helps reducing the number of signatures required
in Bleichenbacher-style attacks by initially amplifying the amount of samples, although
their analysis was neither detailed nor general. In fact, the HGJ-like algorithm implemented
in [TTA18a] can be regarded as an instance of the generalized birthday algorithm analyzed
by Wagner [Wag02] and Dinur [Din19]. The latter in particular analyzes the time–space
tradeoffs in detail, which we would like to apply and extend by introducing the third
parameter, the data complexity. Our formulation below is motivated by a practical situation
where the adversary may want to trade the “online” side-channel detection costs (i.e. data
complexity) for the “offline” resources required by Bleichenbacher’s attack (i.e. time and
space complexities). We are now set out to address the following question.

For given most significant bits information in the HNP and the attacker’s budget
for computational resources, what would be the optimal balance between the
time, memory, and input data complexities?

32 CHAPTER 2. LADDERLEAK

2.4.1.1 Tradeoffs for Parameterized 4-list Sum Algorithm

We begin by presenting our mild generalization of Dinur’s tradeoff formula (the one for the
algorithm denoted by A4,1). The main difference is that we made the number of output
samples arbitrary M ′.

Theorem 2.1. For Algorithm 4, the following tradeoff holds.

24M ′N = TM2

or put differently
m′ = 3a+ v − n

where each parameter is defined as follows: N = 2n, where n is the number of top bits
to be nullified; M = 2m = 4× 2a is the number of input samples, where 2a is the length
of each sublist; M ′ = 2m′ ≤ 22a is the number of output samples such that the top n bits
are 0; v ∈ [0, a] is a parameter deciding how many iterations of the collision search to be
executed; T = 2t = 2a+v is the time complexity.

Proof. For each partial target value c ∈ [0, 2v), Step 1.a. takes Õ(2a) time and O(2m)
space to find 2a pairs that sum to c in the top a bits, e.g. by employing the sort-merge
join-like algorithm of [TTA18a]. At Step 1.b. since two pairs x′1 and x′2 are guaranteed to
collide in the top a bits the probability that the collision occurs in the top n bits is 1/2n−a.
Hence we get approximately 22a/2n−a = 23a−n linear combinations5. Iterating these steps
2v times, we get in total M ′ = 2m′ = 23a+v−n samples in Õ(2a+v) time and O(2m) space.
As the algorithm goes through at most 2a × 2v linear combinations of four it follows that
2m′ ≤ 22a.

The above tradeoff gives more flexibility to the sample amplification; as the formula
implies one could amplify the number of input samples to at most 22a by reducing nullified
bits, or by increasing time or memory complexity. This is in particular important in
Bleichenbacher’s framework, since it allows us to carefully coordinate the number of output
samples so that the noise floor is sufficiently smaller than the peak.

2.4.1.2 Integration with Bleichenbacher and Linear Programming

We now integrate the above basic tradeoff formula with two crucial constraints for Bleichen-
bacher’s attack to work; namely, smallness and sparsity of the output linear combinations.
In Bleichenbacher’s attack, the adversary could repeat the 4-list sum algorithm for r rounds
to find small linear combinations of 4r integers below certain budget parameter for the
FFT table, LFFT = 2`FFT , so that the computation of FFT becomes tractable. Hence we
rewrite the tradeoff formula for each round i = 0, . . . , r − 1 as

m′i = 3ai + vi − ni

where we define ni,mi,m
′
i, ai, vi, and ti as in Theorem 2.1. Algorithm 5 describes the

iterative HGJ 4-list sum algorithm, which calls Algorithm 4 as a subroutine. Note that
5We remark that one could obtain slightly more solutions here thanks to the carries of additions and

subtractions, when the problem is instantiated over integers (but not over F2) [TTA18a, Theorem 1].
Accordingly the tradeoff above should be adjusted by a small constant term on the right-hand side, although
this of course doesn’t matter asymptotically.

2.4. IMPROVED ANALYSIS OF BLEICHENBACHER’S ATTACK 33

Algorithm 5 Iterative HGJ 4-list sum algorithm
Require:
L - List of M = 4× 2a uniform random `-bit samples.
{ni}r−1

i=0 - Number of nullified top bits per each round.
{vi}r−1

i=0 - Parameter where vi ∈ [0, ai].
Output: L′ - List of (`−∑r−1

i=0 ni)-bit samples of the length 2mr .
1. Let a0 = a.
2. For each i = 0, . . . , r − 1 :

a. Divide L into 4 disjoint lists L1, . . . ,L4 of length 2ai and sort them.
b. Apply Algorithm 4 to {Li}4i=1 with parameters ni and vi. Obtain a single list
L′ of the expected length 2mi+1 = 23ai+vi−ni . Let L := L′.

3. Output L′.

Table 2.2: Linear programming problems based on the iterative HGJ 4-list sum algorithm
(Algorithm 5). Each column corresponds to the objective and constraints of linear pro-
gramming problems for optimizing time, space, and data complexities, respectively. The
boxed equations are the common constraints for all problems.

Time Space Data
minimize t0 = . . . = tr−1 m0 = . . . = mr−1 min
subject to — ti ≤ tmax ti ≤ tmax
subject to mi ≤ mmax — mi ≤ mmax
subject to

mi+1 = 3ai + vi − ni i ∈ [0, r − 1]
ti = ai + vi i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2 i ∈ [0, r − 1]
mi+1 ≤ 2ai i ∈ [0, r − 1]
min = m0 + f

` ≤ `FFT + f +∑r−1
i=0 ni

mr = 2(logα− 4r log(|Bq(K)|))

now the 2m′i outputs from the i-th round are used as inputs to the (i + 1)-th round, so
we have mi+1 = m′i. Moreover, we could also incorporate a simple filtering technique that
trades the initial problem size for the data complexity: given 2min uniformly random `-bit
samples, one could keep only 2m0 = 2min−f samples below (`− f)-bit for any f ≥ 0.

With these notations in mind, the smallness condition from Algorithm 3 is expressed
as log h′j ≤ ` − f −

∑r−1
i=0 ni ≤ `FFT, since after r iterations the top ∑r−1

i=0 ni bits of
(` − f)-bit input samples get nullified. On the other hand, recall that the peak height
decays exponentially in the L1-norm of the coefficient vectors (see Section 2.2.5), many
sparse linear combinations need to be found in the end to satisfy the second condition
|Bq(K)|4r � 1/

√
M ′, where M ′ = 2mr is the number of outputs after r rounds. By

introducing a new slack variable α ≥ 1 and taking the logarithm the inequality can be
converted to the equivalent equation mr = 2(logα− 4r log(|Bq(K)|)). Here we remark that

34 CHAPTER 2. LADDERLEAK

the slack variable α should be determined depending on the possible largest noise value,
which should be somewhat larger than the average 1/

√
M ′. This can be estimated by

checking the distribution of {h′j}M
′

j=1 after the collision search in Algorithm 3: let H′ and
Z′ be random variables corresponding to h′j = ∑

j ωi,jhi and z′j = ∑
j ωi,jzi, and hence let

K′ = Z′ + skH′. Since Bleichenbacher’s attack should detect the peak at a candidate point
within q/(2LFFT) distance from the actual secret sk, all the modular biases of incorrect
guess K′x = Z′ + (sk ± x)H′ mod q for x ∈ [q/(2LFFT), q/2) are noise. Thus the largest
noise value is maxx |Bq(K′x)| = maxx(|Bq(K′)| · |Bq(xH′)|) (due to Lemma 1 of [DHMP14]),
which relies on the distribution that H′ follows. For each concrete collision search algorithm
one could experimentally find the maximum value of |Bq(K′x)|, and therefore can choose
the appropriate α to make sure that the bias peak is larger than that. For instance, for
two rounds of the iterative HGJ we observed maxx |Bq(K′x)| ≈ 5/

√
M ′. In [ANT+20b] we

discuss the estimation of noise floor in a more formal fashion.
Putting together, we obtain the unified tradeoffs in the form of linear programming

problem, summarized in Table 2.2. For instance, to optimize the data complexity the goal
of linear programming is to minimize the (logarithm of) number of inputs min while the
problem receives budget parameters tmax,mmax, `FFT, slack parameter α, and estimated
bias Bq(K) as fixed constants. We can further iteratively solve the linear programming
over choices of r to find the optimal number of rounds that leads to the best result. For
small number of bit biases like less than 4-bit biases, r is at most 5, so we can efficiently
find the optimal parameters. We present in Figs. 2.3 and 2.4 the optimal time and data
complexities for attacking 1-bit biased HNP, with different FFT table sizes and max
memory bounds. These results are obtained by solving the linear programming problems
with our SageMath [TheYY] script available in our GitHub repository. More tradeoff
graphs in case of few bits nonce leakages are also given in [ANT+20b].

One caveat is, that simply iterating Algorithm 4 r rounds does not necessarily guarantee
the 4r sums in the resulting list; the same element in the original list may be used more
than once in a single linear combinations of 4r when the output list of i-th round is
used as input to the i+ 1-th round. This would violate the coefficient constraints of the
collision search phase required in Algorithm 3, since due to the [DHMP14, Lemma 1.d.]
if K follows the uniform distribution over [0, q/2l) then the bias peak cancels out, i.e.
|Bq(2lK)| = 0. To circumvent the issue one could alternatively use the “layered” HGJ
algorithm due to Dinur [Din19], of which we present a generalized variant in [ANT+20b]
together with its tradeoff linear programming problems in [ANT+20b]. This way, the
input list is first divided into 4r sub-lists and the algorithm guarantees to find linear
combinations composed of single element per each sub-list, while we observe that the
concrete complexities for attacking our OpenSSL targets are worse than the iterative
HGJ. In practice, a few iterations of HGJ algorithm outputs a negligible fraction of such
undesirable linear combinations, and hence the actual bias peak is only slightly lower than
the estimated |Bq(K)|4r . This heuristic was also implicitly exploited by [TTA18a] and we
chose to make use of Algorithm 5 for the better performance in the attack experiments.

Finally, we remark that our approach is generic, allowing to integrate in principle any
K-list integer sum algorithms to establish a similar time–space–data tradeoff formula. In
[ANT+20b], we present more linear programming problems derived from other K-list sum
algorithms, such as the 16-list sum due to Becker, Coron and Joux (BCJ) [BCJ11] and
its multi-layer variant by Dinur [Din19]. For the specific HNP instances related to our
attack on OpenSSL, these K-list sum algorithms provide slightly worse complexities than

2.4. IMPROVED ANALYSIS OF BLEICHENBACHER’S ATTACK 35

20 25 30 35 40 45 50
Data25

30

35

40

45

50

55
Time sect163r1

`FFT =35
`FFT =40
`FFT =45

25 30 35 40 45 50 55
Data25

30

35

40

45

50

55
Time P-192

`FFT =35
`FFT =40
`FFT =45

40 45 50 55 60 65 70
Data25

30

35

40

45

50

55
Time P-224

`FFT =35
`FFT =40
`FFT =45

70 75 80 85 90 95 100
Data25

30

35

40

45

50

55
Time P-256

`FFT =35
`FFT =40
`FFT =45

Figure 2.3: Time–Data tradeoffs where mmax = 30, nonce k is 1-bit biased, slack parameter
α = 8 and the number of rounds r = 2.

20 25 30 35 40 45 50
Data25

30
35
40
45
50
55
60
65
Time sect163r1

`FFT =35
`FFT =40
`FFT =45

25 30 35 40 45 50 55
Data25

30
35
40
45
50
55
60
65
Time P-192

`FFT =35
`FFT =40
`FFT =45

30 35 40 45 50 55 60
Data25

30
35
40
45
50
55
60
65
Time P-224

`FFT =35
`FFT =40
`FFT =45

40 45 50 55 60 65 70
Data25

30
35
40
45
50
55
60
65
Time P-256

`FFT =35
`FFT =40
`FFT =45

Figure 2.4: Time–Data tradeoffs where mmax = 35, nonce k is 1-bit biased, slack parameter
α = 8 and the number of rounds r = 2.

the iterative HGJ. We leave for future work the discovery of parameter ranges where those
alternatives perform better, as well as the adaptation of further list sum algorithms.

2.4.2 Bias Function in Presence of Misdetection

All previous FFT-based attack papers [DHMP14, AFG+14, TTA18a] only considered the
idealized setting where input HNP samples have no errors in MSB information (correspond-
ing to ε = 0 in Section 2.2.3). As observed in Section 2.3, however, this is usually not the
case in practice since the side-channel detection is not 100 percent accurate. This motivates
us to consider the behavior of the bias function on non-uniformly biased samples. Below we
show how to concretely calculate biases when there are ε errors in the input. For instance,
our cache timing attack yields HNP samples with ε = 0.01 for P-192 (resp. ε = 0.027 for
sect163r1), and the present lemma gives |Bq(K)| = (1− 2ε)|Bq(K0)| ≈ 0.98× 0.637 (resp.
|Bq(K)| = (1− 2ε)|Bq(K1)| ≈ 0.946× 0.637). Note that the extreme case where ε = 1/2
simply means that the samples are not biased at all, and therefore |Bq(K)| degenerates to
0. This also matches the intuition; when the attacker gains no side-channel information
about nonces it should be information theoretically impossible to solve the HNP (except
with some auxiliary information like the knowledge of public key corresponding to the
secret).

Lemma 2.1. For b ∈ {0, 1}, any ε ∈ [0, 1/2] and even integer q > 0 the following holds.
Let K be a random variable following the weighted uniform distribution over Zq below.

Pr[K = ki] = (1− b) · 1− ε
q/2 + b · ε

q/2 if 0 ≤ ki < q/2

Pr[K = ki] = b · 1− ε
q/2 + (1− b) · ε

q/2 if q/2 ≤ ki < q

Then the modular bias of K is

Bq(K) = (1− 2ε)Bq(Kb)

36 CHAPTER 2. LADDERLEAK

where Kb follows the uniform distributions over [0 + bq/2, q/2 + bq/2).

Proof. We prove the case for b = 0. The other case holds by symmetry. By Definition 2.2
the bias for K is rewritten as follows due to the law of the unconscious statistician.

Bq(K) =E[e(2πK/q)i] =
∑
ki∈Zq

e(2πki/q)i · Pr[K = ki]

=1− ε
q/2

∑
ki∈[0,q/2)

e(2πki/q)i + ε

q/2
∑

ki∈[q/2,q)
e(2πki/q)i

=1− ε
q/2

∑
ki∈[0,q/2)

e(2πki/q)i + ε

q/2
∑

k′i∈[0,q/2)
e(2π(k′i+q/2)/q)i

=1− ε
q/2

∑
ki∈[0,q/2)

e(2πki/q)i − ε

q/2
∑

k′i∈[0,q/2)
e(2πk′i/q)i

=1− 2ε
q/2

∑
ki∈[0,q/2)

e(2πki/q)i = (1− 2ε)E[e(2πK0/q)i]

where k′i := ki − q/2 and we used e(2π(k′i+π)/q)i = −e(2πk′i/q)i.

For brevity, we omit an almost identical result for odd q. We remark that if q is odd
then there is a tiny additive error of order 1/q. In practice, such an error is negligible
since q is always significantly large for the actual HNP instances, and we experimentally
confirmed that the bias peak for odd q behaves as if q was even.

2.4.3 Concrete Parameters to Attack OpenSSL

sect163r1 To showcase the power of our tradeoff formula we describe how to concretely
choose the optimal parameters to exploit error-prone 1-bit leakages from OpenSSL ECDSA.
For sect163r1, the attacker would be able to obtain ` = 162-bit HNP samples with error
rate at most ε = 0.027 due to our cache timing side-channel analysis. By Lemma 2.1
the modular bias is estimated as |Bq(K)| ≈ 0.602. Suppose the attacker’s computational
budget is tmax = 44, mmax = 29, `FFT = 34 and let the slack variable α = 8. We show in
the next section that such computational facilities are relatively modest in practice. If
the attacker’s goal is to minimize the number of input samples min, then by solving the
linear programming for the data complexity optimization we obtain the solution min = 24.
Our solver script gives all intermediate attack parameters, suggesting the following attack
strategy that amplifies the number of samples by 25 during the first round.

• The first round generates 2m1 = 229 samples with top n0 = 59 bits nullified via
Algorithm 4 in time 2t0 = 2a0+v0 = 222+22 = 244, given 2m0 = 2min = 224 input
samples.

• The second round generates 2m2 = 229 samples with top n1 = 69 bits nullified via
Algorithm 4 in time 2t1 = 2a1+v1 = 227+17 = 244, given 2m1 = 229 input samples.

• After r = 2 rounds of the collision search phase, the bias computation phase does
the FFT of table size 2`FFT = 2`−n0−n1 = 234, expecting to find the peak of height
|Bq(K)|42 = α/

√
2m2 ≈ 0.0003 and then recover the top 34 bits of sk.

2.5. EXPERIMENTAL RESULTS 37

Notice that the required number of input signatures is now significantly lower than
what would have been derived from the previous published works. For example, the
implementation of Aranha et al. [AFG+14] would require over 233 input samples in our
setting. The lower bound formula found in [TTA18a] with the same slack parameter would
yield 229 signatures as input for 2 rounds of the HGJ algorithm. Surprisingly, the best
previous attack record dates back to 2005, in which Bleichenbacher informally claimed
to break 160-bit DSA given only 224 signatures [Ble05] although no details have been
ever explained to date. Since the claimed number of samples does match our result, our
parameter choice above may explain what he conducted back then. Moreover, all these
works only considered the setting where HNP samples come without any errors in the
MSB information. In such an ideal case, our tradeoff formula actually allows to mount the
attack given only 223 samples with almost the same time and space complexity. [ANT+20b]
describes how it can be achieved in detail.

NIST P-192 Attacking the ` = 192-bit HNP would be much more costly in terms of time
complexity, and the attacker would be likely to want to minimize the time. Hence we now
present a solution to the linear programming problem for the optimal time complexity.
Note that our cache attack had the error rate at most ε = 0.01, so the estimated bias
peak is slightly more evident than the one for sect163r1. Suppose the attacker is given
2min = 235 samples as input and its computational budget is mmax = 29, `FFT = 37 and
now let us set the slack variable α = 16 to observe more prominent peak than before.

• As a preprocessing phase, filter f = 6 bits to collect 2m0 = 2min−f = 229 samples
such that h < 2`−f = 2186 holds.

• The first round generates 2m1 = 29 samples with top n0 = 75 bits nullified via
Algorithm 4 in time 2t0 = 2a0+v0 = 227+23 = 250, given 2m0 = 229 input samples.

• The second round generates 2m2 = 30 samples with top n1 = 74 bits nullified via
Algorithm 4 in time 2t1 = 2a1+v1 = 227+23 = 250, given 2m1 = 229 input samples.

• After r = 2 rounds of the collision search phase, the bias computation phase does
the FFT of table size 2`FFT = 2`−f−n0−n1 = 237, expecting to find the peak of height
|Bq(K)|42 = α/

√
2m2 ≈ 0.0005 and then recover the top 37 bits of sk.

Such optimized time complexity allowed us to practically solve the previously unbroken
192-bit HNP even with erroneous 1-bit leakage. Moreover, if we assume error-free input
then only 229 samples are needed to solve the instance with almost the same computational
cost as described in [ANT+20b]. We remark that the lower bound formula of [TTA18a]
with the same slack parameter, filtering bits and modular bias would yield almost the
same number of signatures as input. However, their non-parameterized HGJ algorithm
exhaustively looks at all bit patterns in top a bits and tries to find collisions there (which can
be seen as a special case of A4,2m algorithm in Dinur’s framework by fixing the parameter
v = a). The resulting algorithm would thus run in quadratic time, leading to a much worse
time complexity of around 256.

2.5 Experimental Results

2.5.1 Optimized Parallel Implementations

We implemented Bleichenbacher’s attack instantiated with Algorithm 5 as a collision search
method. Our MPI-based parallel implementation is built upon the public available code

38 CHAPTER 2. LADDERLEAK

Table 2.3: Summary of the experimental results. The “Thread” columns are of the format
#shared-memory threads × #distributed-memory nodes. The “Recovered MSBs” were
computed with respect to the relative error from the actual secret sk, i.e. b`− log |sk−w|c,
where w is an estimated secret key and ` is the bit-length of group size. We remark that
the large body of memory consumption is due to the parallelization overhead, and in fact,
the per-thread RAM usages were below 6GB in the collision search phase and 32GB in
FFT, respectively.

Target Facility Cost Error rate Input Output Thread Time RAM LFFT Thread Time RAM Peak Max Recovered
(Collision) (Collision) (Collision) (FFT) (FFT) (FFT) Height Noise MSBs

NIST P-192 AWS EC2 $16,429 0 229 227 96× 24 113h 492GB 238 128× 2 0.5h 4TB 7.28× 10−4 4.48× 10−4 39
NIST P-192 AWS EC2 $7,870 0.010 235 230 96× 24 52h 492GB 237 1 12h 4TB 5.04× 10−4 1.55× 10−4 39
sect163r1 Cluster – 0 223 227 16× 16 7h 80GB 235 8× 8 1h 128GB 4.92× 10−4 4.29× 10−4 36
sect163r1 Workstation – 0.027 224 229 48 42h 250GB 234 16 1h 512GB 2.82× 10−4 2.21× 10−4 35

base of Takahashi et al. [TT18, TTA18a], and we applied various optimizations to it,
which we summarize below.

• Our implementation accepts the flexible configurations of attack parameters, to fully
accommodate the tradeoffs observed in the previous section, while [TTA18a] only
allowed to exhaustively nullify the fixed number of bits and did not support any
sample amplifications.

• After the preliminary collision search phase in top a bits between two lists, we only
keep the top 64 bits of linear combinations of two, instead of 128 bits as [TTA18a] did.
Without losing the correctness of the algorithm, this allows us to represent samples
using the standard uint64_t type and avoid the multiprecision integer arithmetic
altogether in later collision search phase. Due to this change, both the RAM usage
and cycle counts have been improved by a factor two.

• The 4-list sum algorithm requires to frequently sort the large arrays of uniformly
distributed random elements (i.e. sorting of L′1 and L′2 in Algorithm 4 step 1.a.
). In such a situation the radix sort usually performs better than comparison sort
algorithms like the quick sort used by [TTA18a]. By utilizing the spreadsort function
of Boost library6 we achieved a maximum speedup factor of 1.5.

• In [AFG+14] and [TTA18a] the FFT computations were carried out in a single-node
machine. To achieve scalability we utilize the distributed-memory FFT interfaces of
FFTW [FJ05].

2.5.2 Attack Experiments

NIST P-192 We exploited AWS EC2 to attack two HNP instances without errors and
with ε = 0.001 error. The concrete attack parameters are described in [ANT+20b] and
Section 2.4.3, respectively. To simulate the ECDSA signatures with side-channel leakage,
we first obtained 229 and 235 signatures with (erroneous) MSB information of nonces using
our custom command line interface relying on modified OpenSSL 1.0.2u (in a way that
the MSB information of k gets exposed according to the same empirical profile built on
Section 2.3), and then preprocessed them to initialize the HNP samples as in Section 2.2.3.
The entire signature generation took 114 CPU hours and 7282 CPU hours in total for each
case, and the latter computation was parallelized. The experimental results for the first
iteration of Bleichenbacher’s attack are summarized in Table 2.3. For both experiments

6https://www.boost.org/doc/libs/1_72_0/libs/sort/doc/html/index.html

https://www.boost.org/doc/libs/1_72_0/libs/sort/doc/html/index.html

2.5. EXPERIMENTAL RESULTS 39

we used 24 r5.24xlarge on-demand instances (with 96 vCPUs for each) to carry out the
collision search phase. Since the current largest memory-optimized instance in EC2 is
x1e.32xlarge (with 4TB RAM)7 we accordingly set the FFT table size budget LFFT = 238

using two such instances. To test both parallelized and non-parallelized FFT, we launched 2
distributed-memory nodes with 128 shared-memory threads for the former experiment, and
just a single thread for the latter. As a result we were able to recover the expected number
of most significant key bits. The detected peak sizes matched the estimate |Bq(K)|16 with
a small relative error of order 2−5, and the largest noise floors were about 5 times the
estimated average (i.e. 5/

√
2m2) in both experiments.

Once the top `′ MSBs of sk have been found, recovering the remaining bits is fairly
straightforward in Bleichenbacher’s framework; one could just “re-inject” the known part
of the secret to the HNP samples as k = z + h · sk = (z + h · skhi · 2`−`

′) + h · sklo, where
sk = skhi · 2`−`

′ + sklo, Thus one would obtain a new set of HNP samples and apply
Algorithm 3 iteratively to recover the top bits of sklo. These iterations are much more
efficient than the top MSB recovery because now the collision search only needs to find
the linear combinations smaller than 2`FFT+`′ (see [DHMP14] for more details). Following
the convention from previous works we took a small security margin; assuming that only
`FFT − 4 bits are correctly recovered for each iteration, we set the search space for the
unknown sklo to a slightly larger interval [0, 2`′+4]. In our experiment, we ran Algorithm 3
in total 5 times until the top 170 bits of sk are recovered and then did the exhaustive
search to find the remaining 22 bits. All but first iterations have been completed in around
6 hours using Intel Xeon E5-2670 CPU ×2 (16 cores in total) with 128GB RAM.
sect163r1 We exploited parallel cluster computing nodes (Intel Xeon E5-2670) and
workstation (Intel Xeon E5-2697) to attack two HNP instances without errors and with
ε = 0.0027 error. The concrete attack parameters for the former are described in [ANT+20b]
and the ones for the latter were already described in Section 2.4.3. We first generated 223

and 224 ECDSA signatures like in the case of P-192, which took 1.8 and 3.6 CPU hours
respectively. The measured experimental results are in Table 2.3. The recovery of remaining
bits was carried out as well and it took about 2 hours using the single computing node.
We observed that the peak height after the collision search for sect163r1 without error is
lower than the estimated |Bq(K)|16 ≈ 7.3× 10−4. We conjecture that this may have been
caused by the second round of HGJ applying to distributions which are no longer uniform,
although the formal analysis is left for future work. Owing to our optimized implementation
both attacks succeeded with relatively modest computational costs compared to previous
works. Since the CPU times are below 3 months and per-thread memory usage was 32GB
in both cases we can infer that the entire attack could be easily performed with a current
laptop.
AWS Cost Estimates to Attack NIST P-224 and P-256 Fig. 2.4 indicates that
given 235 P-224 signatures and 235 memory space one could complete the collision search
phase in 254.5 time and then solve the HNP by computing the FFT of size 245. Hence we
can infer from the above empirical results the concrete AWS costs to break P-224 given
only 1-bit nonce leaks; indeed, the entire computation for such a case could be completed
by paying about $300,000 to Amazon and running 256 x1e.32xlarge instances for 45
days (even considering the parallelization overhead), which should be practically doable for
well-funded adversaries. Breaking P-256 with 1-bit leakage remains challenging; however,

7https://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/ec2/pricing/on-demand/

40 CHAPTER 2. LADDERLEAK

if 2 bits of leakage are available thanks to a more powerful side-channel attack, then
[ANT+20b] implies that key recovery is doable with the same computational/AWS costs,
given about half a million signatures.

2.6 Software Countermeasures
The main countermeasure to defend against our attack is enforcing constant-time behavior
in the implementation of scalar multiplication. We discuss three options, in increasing
implementation complexity: Z-coordinate randomization, constant-time evaluation of the
group law and alternative scalar multiplication algorithms.

Given a high-quality entropy source also required to generate nonces for ECDSA, the
countermeasure that is easiest to implement is randomization of Z-coordinates to guarantee
all intermediate points in project coordinates. This is a popular countermeasure when
implementing the Montgomery ladder in Curve25519, although its exact efficacy against
side-channel attacks in that context is not entirely clear [DHH+15]. We further note that
additional care must be taken when converting from projective to affine coordinates at the
end of the computation to prevent a related attack [CAGB20].

Another potential countermeasure is to refactor the implementation to satisfy constant-
time guarantees. A first option is to implement the group law in constant time using
the complete formulas in [RCB16], admitting a substantial performance impact [SS19].
There are other alternatives for the scalar multiplication algorithm which do not penalize
performance as much. For example, the SPA-resistance left-to-right double-and-add scalar
multiplication strategy by Coron [Cor99] computes a point addition and a point doubling at
every iteration, using a conditional copy to select the correct result at the end. This strategy
would have comparable performance to Montgomery ladder in the Weierstrass model while
being conceptually simpler to implement securely. Other alternatives would be implementing
the ladder over co-Z arithmetic to remove explicit handling of Z-coordinates [Mel07], or a
dedicated exception-free ladder that favors constant-time execution [SM16].

Our patches submitted as part of coordinated disclosure implement the coordinate
randomization countermeasure to randomize both accumulators independently as a defense-
in-depth measure, without needing to take into account how the underlying field arithmetic
is implemented. We validated the effectiveness of the countermeasure in both binary
and prime curves by failing to mount the same cache-timing attacks against the patched
implementations, and later by runing the dudect dynamic analysis tool [RBV17]. Our
patches illustrating the countermeasure are available in our GitHub repository, together
with datasets for signature computation containing the cache-timing traces and dudect
integration.

Following recent trends in research and practice, we recommend new applications of
digital signatures to adopt more modern schemes that facilitate constant-time implementa-
tion [BDL+12].

Chapter 3

Security of Hedged Fiat-Shamir
Signatures

3.1 Introduction

Deterministic Signatures and Fault Attacks Some signature schemes require a fresh,
secret random value per-signature, sometimes called a nonce. Nonce misuse is a devastating
security threat intrinsic to these schemes, since the signing key can be computed after as few
as two different messages are signed using the same value. The vulnerability can result from
either programming mistakes attempting to implement non-trivial cryptographic standards,
or faulty pseudo-random number generators. After multiple real-world implementations
were found to be surprisingly vulnerable to this attack [fai10, BR18] researchers and
practitioners proposed deterministic signature schemes, such as EdDSA [BDL+12], as a
countermeasure, in which per-signature randomness is derived from the message and secret
key as a defense-in-depth mechanism. However, it has been shown that simple low-cost fault
attacks during the computation of the derandomized signing operation can leak the secret
key by artificially provoking nonce reuse or by corrupting computation in other ways [Bae14,
Sch16, BP16, ABF+18]. Recent papers have experimentally demonstrated the feasibility
of these attacks [RP17, PSS+18, SB18]. Moreover, [BP18] and [RJH+19] extended such
fault attacks to exploit deterministic lattice-based signature schemes among round two
candidates of the NIST Post-Quantum Cryptography Standardization Process [AASA+19],
where resistance to side-channel attacks is a design goal. Despite these attacks, deterministic
signature generation is still likely a positive outcome in improving security, since fault
attacks are harder to mount.

Fault Resilience of Hedged Signatures In order to balance concerns of both nonce
reuse and the threat of fault injection, some signature designs are advocating deriving the
per-signature randomness from the secret key sk, message m, and a nonce n. The intention
is to re-introduce some randomness as a countermeasure to fault injection attacks, and
gracefully handle the case of poor quality randomness, to achieve a middle-ground between
fully-deterministic and fully-probabilistic schemes. We call constructions following this
paradigm hedged signatures. Despite the growing popularity of the hedged paradigm in
practical signature schemes (such as in XEdDSA, VXEdDSA [Per16], qTESLA [BAA+19],
and Picnic2 [ZCD+19]), to the best of our knowledge, there has been no attempt to
formally analyze the fault resilience of hedged signatures in the literature. While the

41

42 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

hedged construction intuitively mitigates some fault attacks that exploit the deterministic
signatures, it does add a step where faults can be injected, and it has not been shown if faults
to the hedging operation allow further attacks, potentially negating the benefit. Therefore,
we set out to study the following question within the provable security methodology:

To what extent are hedged signatures secure against fault attacks?

Concretely, we study fault attacks in the context of signature schemes constructed
from identification schemes using the Fiat–Shamir transform [FS87]. We propose a formal
model to capture the internal functioning of signature schemes constructed in the hedged
paradigm, and characterize faults to investigate their impact across different steps of the
signature computation.

We prove that for some types of faults, attacks are mitigated by the hedged paradigm,
while for others, attacks remain possible. This provides important information when design-
ing fault-tolerant implementations. We then apply our results to hedged EdDSA (called
XEdDSA) and the Picnic2 post-quantum signature scheme [ZCD+19], both designed using
the hedged construction. The XEdDSA scheme is used in the Signal protocol [CCD+17]
which is in turn used by instant messaging services such as WhatsApp, Facebook Messenger
and Skype.
Threat Model We consider a weaker variant of the standard adversary assumed in the
fault analysis literature [JT12], who is typically capable of injecting a fault into an arbitrary
number of values. Our adversary is capable of injecting a single-bit fault each time a
signature is computed. We further restrict the faults to be injected at the interfaces between
the typical commit, challenge, and response phases of Fiat–Shamir signatures, i.e., only
those function inputs and outputs can be faulted. This models transient faults injected
into registers or memory cells, but does not fully capture persisting faults that permanently
modify values in key storage, voltage glitches to skip instructions or micro-architectural
attacks to modify executed instructions (such as RowHammer and variants [KDK+14]).

We argue that, even if our model does not capture all possible fault attacks, it provides
a meaningful abstraction of a large class of fault attacks, and thus our analysis provides
an important first step towards understanding the security of hedged signatures in the
presence of faults. This way, designers and implementers can focus on protecting the
portions of the attack surface that are detected as most relevant in practice. We observe
that the effects of fault attacks found in the literature targeting deterministic signatures
can be essentially characterized as simple bit-tampering faults on function input/output,
even though some of actual experiments cause faults during computation [BP18].

Moreover, an abstract model is needed to prove general results, and the general functions
common to all Fiat–Shamir signatures are a natural candidate for abstraction.

We consider two single-bit tampering functions to set or flip individual bits, respectively:
flip_biti(x) to perform a logical negation of the i-th bit of x, and set_biti,b(x) to set the
i-th bit of x to b. This captures both stuck-at and bit-flip fault injection attacks [KSV13],
introduced as data flows through the implementation. Such attacks are practically targeted
at various components of the device, e.g. memory cells, processor registers, or data buses.

3.1.1 Our Contributions

A new security model for analyzing fault attacks. We establish a formal security
model tailored to Fiat–Shamir type signatures (hedged, deterministic or fully probabilistic).

3.1. INTRODUCTION 43

We survey the literature on fault attacks, showing that our model captures many practical
attacks. As a first step, we abstract real-world hedged signature schemes, basing our formal-
ization on Bellare and Tackmann’s nonce-based signatures [BT16] and Bellare, Poettering
and Stebila’s de-randomized signatures [BPS16]. We call this security notion unforgeability
under chosen message and nonce attacks UF-CMNA. In this security experiment, when
submitting a message to the signing oracle, the adversary may also choose the random
input to the hedged extractor, a function that derives the per-signature randomness from a
nonce, the secret key, and the message.

Then we extend UF-CMNA to include resilience to fault attacks. In this security
experiment the adversary plays a game similar to the UF-CMNA game, but the signing
oracle also allows the attacker to specify a fault to be applied to a specific part of the
signing algorithm. We identify eleven different fault types that the adversary can apply to
the signing algorithm, and we denote them by by f0, . . . , f10. For example, fault type f1
applies set_bit or flip_bit to the secret key input to the hedged extractor. This notion
is called unforgeability under faults, chosen message and nonce attacks, and is denoted
F -UF-fCMNA where F is a set of fault types.
Fault resilience of hedged Fiat–Shamir signatures. We then prove that hedged
Fiat–Shamir signature schemes are secure against attacks using certain fault types. Of the
eleven fault types in our model, we found that the generic hedged Fiat–Shamir signature
scheme is resilient to six of them (summarized in Fig. 3.1). As our model gives the attacker
nearly full control of the RNG by default, our main results indicate that the hedged scheme
can resist additional faults even in this (usually dire) scenario. The only constraint is
that message-nonce pairs do not repeat as otherwise the scheme degenerates to a pure
deterministic construction and attacks become trivial. When the underlying ID scheme has
an additional property that we call subset revealing, the corresponding hedged signature
scheme is secure against attacks that use eight of the eleven fault types.

Overall, our results give a full characterization of which fault attacks are mitigated as
intended by the hedged construction, and which fault attacks remain. Our conclusion is
that hedging is never worse than the deterministic construction with respect to faults, plus
it has the additional benefit of hedging against poor randomness.
Fault resilience of XEdDSA and Picnic2. We use the Schnorr signature scheme
throughout the paper as an example. As an application of our results, we show that hedged
Schnorr resists attacks for six of the eleven fault types in our model. One implication
is that the hedged scheme XEdDSA does provide better resistance to fault attacks than
(deterministic) EdDSA. In particular, XEdDSA resists all fault injection attacks against
EdDSA described in the literature that rely on nonce reuse without skipping nonce
generation entirely [BP16, RP17, ABF+18, PSS+18, SB18]. We also show to what extent
the Picnic2 signature scheme is secure against the fault attacks in our model. Because it is
subset-revealing, resistance to eight of the eleven fault types is immediately established
by our results for generic ID schemes. For the remaining three, we prove security for one
(using specific details of Picnic2), and show attacks for the other two.

3.1.2 Related Work

To the best of our knowledge, ours is the first work considering fault attacks on hedged
constructions. However, the modeling and construction of secure cryptographic schemes
in the presence of faults or tampering attacks has received plenty of attention in recent

44 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

HE Com H Resp CSF
sk 7
n
m 3

pk
σ

3
3
7

3

N

F

3

ρ
7

a
33

St
F

e
33

z
3

3
3

3

Figure 3.1: Overview of our results for hedged Fiat–Shamir type signature schemes. 3

indicates security against 1-bit fault on the corresponding wire value, and 7 indicates
an attack or counterexample. A F (resp. N) indicates that security only holds for the
schemes derived from subset-revealing ID (resp. input-delayed ID) protocols. The function
components HE,Com,H,Resp, and CSF stand for hedged extractor, commitment, hash
function, response, and canonical serialization function, respectively (see Sections 3.2
and 3.3 for the formal definitions).

years. We survey some of this work below. Related work on fault attacks to deterministic
signature schemes is given in Section 3.2.3.
De-randomized and Hedged Constructions. Bellare and Tackmann [BT16] studied
cryptography that is hedged against randomness failures. They also describe the “folklore
construction”, where the signing key and message to be signed are used to derive the
per-signature randomness, and additional randomness may or may not be included in
the derivation. Schnorr signatures with this construction have been analyzed by M’Raihi
et al. [MNPV99]. A generic version of the folklore derandomization construction was
proven UF-CMA secure by Bellare, Pottering and Stebila [BPS16]. Other works on hedged
cryptography include [RY10] and [BBN+09, BH15, BPS17, HLC+18] when considering
hedged public-key encryption in particular.
Fault Attacks and Tamper-Resilient Signatures. Tamper-resilient cryptography has
received plenty of attention, both in the context of theoretical and practical cryptographic
research, dating back at least to the early paper of Boneh, Demillo and Lipton [BDL97]
considering fault attacks on RSA signatures (here it is noted that some attacks fail when
a random padding is used, since it ensures that the same message is never signed twice).
Later Coron and Mandal [CM09] proved that RSA-PSS is protected against random faults,
and Barthe et al. [BDF+14] extends this to non-random faults as well. All of the above
works contain examples of how randomization improves the security of signature schemes
against fault attacks (in a provable way).

Other early work includes Gennaro et al. [GLM+04] that provides an early framework
for proving tamper resilience, and Ishai et al. [IPSW06] which proposes generic transfor-
mation for tamper-resilient circuits. In a later work by Faust et al. [FPV11] a different
and incomparable model was considered, which in particular guarantees security against
tampering with arbitrary number of wires. We note that our model is similar to theirs since

3.1. INTRODUCTION 45

it also considers adversaries that are allowed to flip or reset each bit in the circuit. Similar
ideas are also used in practice when considering fault resilient masking (e.g. [DAN+18]).

In our model the adversary is only allowed to tamper with part of the computation.
Similar limitations have been considered before in the literature to circumvent impossibility
results, in particular in the so called split-state model [DPW18]. Several constructions
have been proposed in this model including: non-malleable codes (Dziembowski, Pietrzak
and Wichs [DPW18]), signature schemes (Faonio et al. [FNSV18]), and more (Liu and
Lysyanskaya [LL12]).

Other related work on tamper resilient signature schemes includes [FV16, FX16,
ACM+17, DFMV17]. Most of this previous work has focused on constructing novel
tamper resilient signature schemes, or understanding the limits of tamper resilience, in
theory. Instead, we focus on analyzing the tamper resilience of a popular transformation
used in practice.

Related key attacks (RKA) can be seen as a special case of tampering. Bellare and
Kohno [BK03] initiated the formal study of related-key attacks. Morita et al. [MSM+16]
analyzed RKA security of Schnorr signatures.

Ineffective Fault Attacks (IFA) and Countermeasures. In this paper we con-
sider not only flip_bit fault attacks, but also set_bit faults for the following reason.
Clavier [Cla07] proposed ineffective fault attacks (IFA), in which the adversary forces
a certain intermediate bit value to be stuck at 0 or 1, and tries to recover the secret
internal state by observing whether the correct output is obtained (i.e. the injected fault
was ineffective). IFA is very powerful, and works even if the target algorithm contains
typical countermeasures against fault attacks, such as a correctness check after redundant
operations [BCN+06] and the infective countermeasure [YJ00]. IFA has been recently
superseded by statistical ineffective fault attacks (SIFA) [DEK+18, DEG+18], that use
statistical analysis to enable mounting IFA with low-precision bit-fixing, random or bit-flip
faults. Daemen et al. [DDE+20] provided several practical countermeasures against SIFA,
and their abstract adversarial model is close to ours in the sense that the adversaries are
allowed to flip or set a single bit wire value in the circuit per query, though their security
argument does not follow the provable security methodology

Concurrent Work. An independent work by Fischlin and Günther [FG20] proposes
a memory fault model for digital signatures and authenticated encryption. Their main
result about a generic hedged signature scheme is two-fold: it is provably secure when
the nonce is fully faulted, or when the message, nonce, and hedged extractor output are
all differentially faulted in each signing query. The former essentially coincides with our
Lemma 3.3, but with a different proof technique. For the latter, the outcome diverges
because the adversarial power in our model is different in the following ways: (1) the
adversary can locally inject a fault into sk as a hedged extractor input, (2) the adversary
can inject a bit-fixing fault, not only a bit-flip (i.e. differential) fault, (3) the adversary
has nearly full control over the nonce, instead of assuming nonces are randomly generated
and subject to bit flips later on, but (4) the adversary cannot inject multi-bit faults into
multiple variables in a query. We additionally consider fault attacks on other various
intermediate values inside the signing operation. Our treatment is then more fine-grained
and successfully captures typical existing attacks on deployed deterministic schemes (like
attacks that fault the challenge hash), while [FG20] does not. The upside of the generic
approach in [FG20] is that the result applies to more signature schemes.

46 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

Gen(1κ)
1 : (pk, sk)← IGen(1κ)
2 : return (pk, sk)

H(x)
1 : If HT[x] = ⊥ :

2 : HT[x] $← DH

3 : return HT[x]

Sign(sk,m; ρ)
1 : (a, St)← Com(sk; ρ)
2 : e← H(a,m, pk)
3 : z ← Resp(sk, e, St)
4 : σ ← CSF(a, e, z)
5 : return σ

Verify(pk,m, σ)
1 : (a, e, z)← CDF(σ, pk)

2 : return V(a, e, z, pk) ?= 1

3 : ∧ H(a,m, pk) ?= e

4 :

Figure 3.2: The Fiat–Shamir transform applied to canonical ID with serialization CSF,
to construct the signature scheme FS[ID,CSF] = (Gen,Sign,Verify). The function H :
{0, 1}∗ → DH is constructed with a cryptographic hash function which we model as a
random oracle.

3.2 Preliminaries

Notation The notation | · | denotes two quantities depending on the context: |S| denotes
the cardinality of a set S, and |s| denotes the length of a bit string s. The notation x $← X
means that an element x is sampled from the set X uniformly at random. We often use
the notation [n] as a short hand for a set {1, . . . , n} where n ∈ N. When we explicitly
mention that an algorithm A is randomized, we use the notation A(x; ρ) meaning that it is
executed on input x with random tape ρ. We also remark that if the lemmas/theorems are
marked with “(informal)”, then it means that asymptotic bounds are omitted. The full
version [AOTZ19] includes more rigorous statements for all of them.
Fiat–Shamir type Signature Schemes This paper studies the robustness of Fiat–
Shamir type signature schemes against fault attacks. The details of these algorithms
appear in the full version. The Schnorr signature scheme [Sch91] is one of the most
well-known signature schemes using the Fiat–Shamir transform, and EdDSA and XEdDSA
are essentially deterministic and hedged variants of Schnorr. The Picnic2 signature
scheme [ZCD+19] is constructed by applying the Fiat–Shamir transform to a three-round
zero-knowledge proof system by Katz et al. [KKW18], which follows so-called “MPC-in-the-
head” paradigm [IKOS07]. The hedging strategy we study in this paper is recommended
in its specification.

3.2.1 Definitions

In this subsection we recall several basic definitions related to digital signatures constructed
from the identification protocols. Since this paper deals with Fiat–Shamir signatures,
we always assume that the signing algorithm of digital signature schemes takes some
randomness as input.

We now define a three-round public-coin identification protocol, the basis of Fiat–
Shamir-type signatures. The definition below essentially follows the formalization of
[KLS18] unless explicitly stated.

3.2. PRELIMINARIES 47

Definition 3.1 (Canonical Identification Protocol). A canonical identification protocol,
denoted by a tuple of algorithms ID = (IGen,Com,Resp,V), is a three-round protocol defined
as follows:

• IGen(1κ), where κ is a security parameter, outputs a key pair (sk, pk). In the context
of identification protocols, pk and sk are sometimes called statement and witness.
We assume that IGen defines a hard-relation, and that pk defines the parameters of
the scheme including: randomness space Dρ, commitment space A, challenge space
DH and response space Z.

• Prover invokes a committing algorithm Com on a secret key sk and randomness
ρ ∈ Dρ as input, and outputs a commitment a ∈ A and state St.

• Verifier samples a challenge e from the challenge space DH ⊆ {0, 1}∗.
• Prover executes a response algorithm Resp on (sk, e, St) to compute a response
z ∈ Z ∪ {⊥}, where ⊥ /∈ Z is a special symbol indicating failure. On top of this
standard formalization, we further require that Resp returns ⊥ whenever it receives
a malformed challenge ẽ /∈ DH , as such a simple sanity check is performed in most
practical implementations.

• Verifier executes a verification algorithm V on (a, e, z, pk) as input, to output 1 (i.e.
accept) or 0 (i.e. reject).

We call a triple (a, e, z) ∈ A×DH × Z ∪ {⊥,⊥,⊥} a transcript, and it is said to be valid
with respect to pk if V(a, e, z, pk) = 1. We say that ID is correct if for every pair (pk, sk)
output by IGen, for every ρ ∈ Dρ, and for every transcript (a, e, z) from an honest execution
of the protocol between Prover(sk; ρ) and Verifier(pk), Pr[V(a, e, z, pk) = 1] = 1.

Remark The response algorithm in the above definition does not explicitly take a com-
mitment a as input. We decided to do so since a is generally not required to compute z,
such as in the Schnorr identification scheme and, if needed, we assume that St contains a
copy of a.

The following definition is adapted from [HL10, Chapter 6]. We explicitly differentiate
three flavors of the special HVZK property depending on a level of indistinguishability,
following the approach found in [Gol01, Chapter 4]. Note that εHVZK below is equal to
0 for special perfect HVZK. In case HVZK is only computational, the definition should
be augmented with the auxiliary input to enable sequential composition. In the full
version [AOTZ19] we address the technicalities in detail1.

Definition 3.2 (Special c/s/p-HVZK). Let ID = (IGen,Com,Resp,V) be a canonical
identification protocol. ID is said to be special computational/statistical/perfect honest-
verifier zero knowledge (special c/s/p-HVZK) if there exists a probabilistic polynomial-time
simulator M, which on input pk and e outputs a transcript of the form (a, e, z) that is
computationally/statistically/perfectly indistinguishable from a real transcript between an
honest prover and verifier on common input pk. We also denote by εHVZK the upper bound
on the advantage of all probabilistic polynomial-time distinguishing algorithms.

In our security analysis of specific hedged-signature schemes in the presence of faults
we will provide a concrete bound on the min-entropy of the associated ID scheme. But
here we present a useful lemma stating that the commitment message a of any secure

1We thank the authors of [GHHM21] for communicating this issue.

48 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

identification scheme must have high min-entropy. The lemma might be folklore but we
were unable to find a reference to it, so we include it for completeness in the full version.

Lemma 3.1. Let ID be a canonical identification protocol as in Definition 3.1, satisfying
special-soundness and HVZK (as in Definition 3.2). Then, the min-entropy α of the
commitment message a (given the public key) is at least α = ω(log(λ))

Definition 3.3 (Subset Revealing Identification Protocol). Let ID = (IGen,Com,Resp,V)
be a canonical identification protocol. We say that ID is subset revealing if ID satisfies
the following. 1) St is a set of c states {St1, . . . , Stc}, 2) Resp first derives an index set
I ⊂ [c] using only e as input, and outputs Sti for i ∈ I as z, and 3) |St| and |DH | are both
polynomial in κ.

Remark. Similar definitions were previously given by Kilian et al. [KMO90] and Chail-
loux [Cha19], where they make zero-knowledge or identification protocols simply reveal a
subset of committed strings. Our definition generalizes their notion so that it can cover
some protocols that reveal arbitrary values other than committed strings. Also notice
that the Resp function of subset revealing ID schemes does not use sk at all. The above
definition includes the Picnic2 identification protocol (discussed in more detail in Section
3.6), and many classic three-round public-coin zero-knowledge proof protocols, such as
the ones for graph isomorphism, Hamilton graphs, and 3-colorable graphs [GMW86]. We
also emphasize that |St| and |DH | need to be restricted for efficiency reasons – otherwise
any identification protocol (including Schnorr) could be made subset revealing by simply
precomputing (exponentially many) responses for every possible challenge and storing them
in the state.
Serialization of Transcripts. For efficiency purposes, most Fiat-Shamir based signature
schemes do not include the entire transcript of the identification protocol as part of the
signature. Instead, redundant parts are omitted and recomputed during the verification
phase. Different signature schemes omit different parts of the transcript: in some cases a
is omitted and in others e is omitted. To capture this in our framework without loss of
generality we introduce a serialization function that turns the transcript of an identification
protocol into a signature.

Definition 3.4 (Canonical Serialization Function). Let ID = (IGen,Com,Resp,V) be a
canonical identification protocol, and let pk be a public key output by IGen. We call a
function CSF : {0, 1}∗ → {0, 1}∗ a canonical serialization function if CSF is efficiently
computable and deterministic, and satisfies the following basic properties: 1) it is valid,
meaning that there exists a corresponding de-serialization function CDF which satisfies the
following: for any transcript (a, e, z) ∈ A×DH ×Z ∪{⊥,⊥,⊥} such that V(a, e, z, pk) = 1,
it holds that CDF(CSF(a, e, z), pk) = (a, e, z), and 2) it is sound with respect to invalid
responses, meaning that it returns ⊥ upon receiving z = ⊥ as input.

Definition 3.5 (Fiat–Shamir Transform). The Fiat–Shamir transform, denoted by FS,
takes a canonical identification protocol ID and canonical serialization function CSF as
input, and outputs a signature scheme FS[ID,CSF] = (Gen,Sign,Verify) defined in Fig. 3.2.
For convenience, this paper refers to such schemes as Fiat–Shamir type signature schemes.

Remarks By construction, it holds that if ID is correct, then FS[ID,CSF] is a correct
signature scheme. We assume ID is correct throughout the paper. In Fig. 3.2, the

3.2. PRELIMINARIES 49

verification condition may appear redundant. However, the above definition allows us to
capture several variations of the Fiat–Shamir transform. For instance, a type of Fiat–Shamir
transform found in some papers e.g. Ohta–Okamoto [OO98] and Abdalla et al.[AABN02]
can be obtained by letting CSF(a, e, z) output σ := (a, z) and letting CDF(σ, pk) call
e← H(a,m, pk) inside to reconstruct the whole transcript. In contrast, if ID is commitment-
recoverable [KLS18], one can instantiate its serialization as follows: CSF(a, e, z) outputs
σ := (e, z) and CDF(σ, pk) calls a← Recover(pk, e, z) inside to reconstruct the transcript.

3.2.2 Relation between UF-KOA Security and UF-CMA Security

The security notion unforgeability against key-only attacks (UF-KOA), is the same as
UF-CMA, but with the restriction that the adversary is only given the public key, and no
Sign oracle. The following result is a mild generalization of [KMP16, Lemma 3.8]: the
original lemma only covers perfect HVZK and does not include the serialization function
which we use in this work. The proof is very similar to the original one and is provided
in the full version. In Section 3.4, we extend this result, showing that for some signature
schemes security against key-only attacks implies security against certain fault attacks.

Lemma 3.2 (UF-KOA→ UF-CMA (informal)). Let ID be a correct canonical identification
protocol and CSF be a canonical serialization function for ID. Suppose ID is special c/s/p-
HVZK and has α-bit min-entropy. If FS := FS[ID,CSF] is UF-KOA secure, then FS is
UF-CMA secure in the random oracle model.

3.2.3 Fault Attacks on Deterministic Fiat–Shamir Signatures

In recent years, several papers [BP16, RP17, ABF+18, PSS+18, SB18] presented differ-
ential fault attacks against deterministic Fiat–Shamir-type schemes. We present the
conceptual overview of those previous attacks. A more detailed survey is given in the full
version [AOTZ19].

Special Soundness Attack (SSND) This type of attack exploits the special soundness
property of the underlying canonical identification protocol. That is, there exists an
efficient algorithm that extracts the witness sk corresponding to the statement pk, given
two accepting transcripts (a, e, z) and (a, e′, z′), where e 6= e′ [Dam10]. Note in fact that it
is easier to extract the secret key for an attacker than for a knowledge extractor in a proof
of security, since the attacker can assume that the prover honestly follows the protocol
while the special soundness property considers possibly cheating provers. SSND can be
cheaply achieved by injecting a fault into commitment output, or hash input/output.

Large Randomness Bias Attack (LRB) This attack slightly modifies the randomness ρ
to ρ′ = ρ + ∆ using, e.g. flip_bit fault. The attack highly relies on the deterministic
property because the adversary knows that all signatures on the same message m use
the same ρ, and if ρ is slightly perturbed by some sufficiently small ∆, he can find ∆
with an exhaustive search. Then the adversary can recover the secret key by querying
two deterministic signatures on the same message, which were computed using correlated
randomness ρ and ρ + ∆. LRB can be cheaply achieved by injecting a fault into the
deterministic randomness derivation phase, or the randomness as response input.

50 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

3.3 Formal Treatment of Hedged Signatures
In this section, we give formal definitions for a hedged signature scheme and its security
notion, based on Bellare–Tackmann’s nonce-based signatures [BT16, §5] and Bellare–
Poettering–Stebila’s de-randomized signatures [BPS16, §5.1]. Then we define our new
security notion for hedged Fiat–Shamir signature schemes, which guarantees resilience
against 1-bit faults on function inputs/outputs.

HSign(sk,m, n)
1 : ρ← HE(sk, (m,n))
2 : σ ← Sign(sk,m; ρ)
3 : return σ

ExpUF-CMNA
HSIG,HE (A)

M ← ∅; HET← ∅
(sk, pk)← Gen(1κ)
(m∗, σ∗)← AOHSign,HE(pk)
v ← Verify(m∗, σ∗)
return (v = 1) ∧m∗ /∈M

OHSign(m,n)
σ ← HSign(sk,m, n)
M ←M ∪ {m}
return σ

HE(sk′, (m′, n′))
If HET[sk′,m′, n′] = ⊥ :

HET[sk′,m′, n′] $← Dρ

return HET[sk′,m′, n′]

Figure 3.3: Hedged signature scheme HSIG = R2H[SIG,HE] = (Gen,HSign,Verify) and
UF-CMNA experiment. Key generation and verification are unchanged.

3.3.1 Security of Hedged Signature Schemes

We now consider a simple transformation R2H, which converts a randomized signature
scheme to a so-called “hedged” one, and its security notion UF-CMNA (unforgeability
against chosen message and nonce attacks). See Fig. 3.3 for the full details. Parts of the
transformation appear in the literature independently, but by combining them, we can
model the concrete hedged signature schemes of interest. We now describe the differences
and similarities between R2H and the transformations that appeared in previous works.

• On one hand, a hedged signing algorithm HSign takes a nonce n along with a message
m, and derives the randomness ρ ∈ Dρ (of length `ρ bits) with a hedged extractor
HE with (sk, (m,n)) as input. We do not specify how the nonces are generated
here, but in practice they are the output of a pseudorandom number generator. As
we will see soon, low entropy nonces do not really degrade the security of hedged
signatures as long as the underlying randomized signature scheme is secure. The
hedged construction we presented is essentially based on the approach taken in [BT16].
Note that HE is in practice a cryptographic hash function, that we will model as a
random oracle.

• On the other hand, we use the signing key sk as the key for the hedged extractor,
whereas Bellare and Tackmann used a separately generated key (which they called the
“seed”), that must be stored with sk. We chose to do so in order to model concrete
hedged Fiat–Shamir type schemes, such as XEdDSA and Picnic2. In fact, the security
of the deterministic construction that hashes sk and m to derive ρ (with no nonce)
was formally treated by Bellare–Poettering–Stebila [BPS16], and our security proof
in the next section extends their result.

3.3. FORMAL TREATMENT OF HEDGED SIGNATURES 51

• Moreover, the signing oracle OHSign in our UF-CMNA experiment takes m and n as
input adaptively chosen by the adversary A. This can be regarded as the strongest
instantiation of the oracle provided in [BT16], where nonces are derived via what they
call a nonce generator (NG). Indeed, one of their results for nonce-based signatures
(Theorem 5.1) does not impose any restrictions on NG, and it implicitly allows
adversaries to fully control how the nonces are chosen in the signing oracle.

Now we formally define a security notion for hedged signature schemes, as a natural
extension of the standard UF-CMA security definition. We also give a tweaked version of
Theorem 4 in [BPS16], where they only consider the signing oracle that doesn’t take adver-
sarially chosen nonces. Note that Lemma 3.3 applies to any secure signature schemes and
hence it may be of independent interest. We present a proof in the full version [AOTZ19] for
completeness.

Definition 3.6 (UF-CMNA). A hedged signature scheme HSIG = (Gen,HSign,Verify) is
said to be UF-CMNA secure in the random oracle model, if for any probabilistic polynomial
time adversary A, its advantage

AdvUF-CMNA
HSIG,HE (A) := Pr

[
ExpUF-CMNA

HSIG,HE (A) = 1
]

is negligible in security parameter κ, where ExpUF-CMNA
HSIG,HE (A) is described in Fig. 3.3.

Lemma 3.3 (UF-CMA → UF-CMNA (informal)). Let SIG := (Gen, Sign,Verify) be a ran-
domized digital signature scheme, and let HSIG := R2H[SIG,HE] = (Gen,HSign,Verify) be
the corresponding hedged signature scheme with HE modeled as a random oracle. If SIG is
UF-CMA secure, then HSIG is UF-CMNA secure.

3.3.2 Security of Hedged FS Type Signature Schemes Against Fault
Adversaries

1-bit Transient Fault on Function Input/Output To model transient fault attack-
ers on data flow, recall that we consider the following 1-bit tampering functions: 1)
flip_biti(x), which does a logical negation of the i-th bit of x, and 2) set_biti,b(x),
which sets the i-th bit of x to b. Using flip_biti(x) (for instance, with a random position
i), we can model a typical bit-flip induced from fault injection to the memory cells, CPU
register values, or data buses of the target device. Beyond faults, we also wish to capture the
case in which the randomness has a 1-bit bias, which has been shown to be a serious threat
for some Fiat–Shamir type signatures [AFG+14]. We can model this using set_biti,b:
when this function is applied to ρ, we can ensure that the first bit of ρ is “stuck” at zero
by setting i = 0 and b = 0 to model 1-bit bias. Moreover, set_bit is a typical way to
achieve so-called ineffective fault attacks [Cla07, DEK+18]. Our formalization covers many
fault attacks found in the surveyed literature (in the full version), as they rely only on low
precision faults like random bit flips of the function input or output

As a notable difference between our fault adversary model and actual attacks, some
surveyed papers caused faults on several bits/bytes of function input or output when
performing fault attack experiments. This is not to take advantage of multiple-bit faults,
but rather because reliably causing a fault on a specific target memory cell is difficult in
practical experiments. In fact, the attacks we classified as SSND and LRB can be achieved
with uncontrolled 1-bit flip faults, and hence our model at least seems to capture the essence

52 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

ExpUF-fCMA
FS (A) ExpUF-fCMNA

HFS,HE (A)

1 : M ← ∅; HT← ∅; HET← ∅
2 : (sk, pk)← Gen(1κ)

3 : (m∗, σ∗)← AOFaultSign,H(pk)

4 : (m∗, σ∗)← AOFaultHSign,H,HE(pk)

5 : v ← Verify(m∗, σ∗)
6 : return (v = 1) ∧m∗ /∈M

OFaultHSign(m,n, j, φ)
1 : fj := φ; fk := Id for k 6= j

2 : FaultHSign

1 : ρ← f2(HE(f1(sk), f0(m,n)))
2 : (a, St)← f4(Com(f3(sk; ρ)))

3 : â, m̂, p̂k ← f5(a,m, pk)

4 : e← f6(H(â, m̂, p̂k))
5 : z ← f8(Resp(f7(sk, e, St)))
6 : σ ← f10(CSF(f9(a, e, z)))

3 : M ←M ∪ {m̂}
4 : return σ

OFaultSign(m, j, φ)
1 : fj := φ; fk := Id for k 6= j

2 : FaultSign

1 : ρ
$← Dρ; ρ← f2(ρ)

2 : (a, St)← f4(Com(f3(sk; ρ)))

3 : â, m̂, p̂k ← f5(a,m, pk)

4 : e← f6(H(â, m̂, p̂k))
5 : z ← f8(Resp(f7(sk, e, St)))
6 : σ ← f10(CSF(f9(a, e, z)))

3 : M ←M ∪ {m̂}
4 : return σ

Figure 3.4: UF-fCMNA and UF-fCMA security experiments and faulty signing oracles for
both hedged (HFS) and plain (FS) Fiat–Shamir signature schemes. Id stands for the
identity function. The function H and HE (not shown), are the same as in Fig. 3.2 and
Fig. 3.3, respectively. A dashed box indicates that the instructions inside correspond to
the actual faulty signing operation.

of previous attacks exploiting the deterministic nature of signing. A natural generalization
is to allow set_bit to work on multiple bits, for example to model word faults, or word
zeroing faults. We can also model stronger attacks that are uncommon in the literature,
such as setting words to arbitrary values. However, we focus on 1-bit faults in this paper
as a first attempt to perform the formal analyses. We leave the security analysis against
multi-bit faults for future work. In the full version, we describe some more fault attacks
that are not covered by our model, to illustrate the limitations of our analysis. Each of
these issues makes an interesting direction for future work.
Equipping UF-CMNA Adversaries with Faults Now we are ready to define security
against fault adversaries using the above tampering functions. In Fig. 3.4, we give the
modified hedged signing oracle OFaultHSign, which additionally takes a tampering function
φ ∈ {set_biti,b, flip_biti, Id} and j ∈ [0, 10] as input, where Id is the identity function.
This way, the adversary can specify for each query the tampering function (φ) as well as the
target input/output position (j) within the signing operation to be faulted. For example,
when j = 6, φ is applied to the output of the hash function H, and when j = 5 it is applied

3.3. FORMAL TREATMENT OF HEDGED SIGNATURES 53

to the input to H. The other positions are not faulted. Notice that we also allow the
adversary to set φ := Id in arbitrary signing queries, so OFaultHSign includes the behavior
of the non-faulty oracle OHSign as a special case. A generalization we considered but
decided against, is allowing faults on multiple wire values per sign query. The combinatorial
complexity of security analysis in this setting is daunting, and we did not find this to be
relevant in practice, based on our survey of practical attacks.

Definition 3.7 (UF-fCMNA). A hedged Fiat–Shamir signature scheme

HFS := R2H[FS[ID,CSF],HE] = (Gen,HSign,Verify)

is said to be F -UF-fCMNA secure, if for any probabilistic polynomial time adversary A who
makes queries to OFaultHSign with a fault function fj ∈ F ⊆ {f0, . . . , f10} for each query
(called F -adversary), its advantage

AdvUF-fCMNA
HFS,HE (A) := Pr

[
ExpUF-fCMNA

HFS,HE (A) = 1
]

is negligible in security parameter κ, where ExpUF-fCMNA
HFS,HE (A) is described in Fig. 3.4.

In the next section, we also use the following intermediate security notion, which
essentially guarantees the security of plain randomized Fiat–Shamir signature scheme
against fault adversaries.

Definition 3.8 (UF-fCMA). A Fiat–Shamir signature scheme

FS := FS[ID,CSF] = (Gen,Sign,Verify)

is said to be F -UF-fCMA secure, if for any probabilistic polynomial time adversary A who
makes queries to OFaultSign with a fault function fj ∈ F ⊆ {f2, . . . , f10} per each query
(called F -adversary), its advantage

AdvUF-fCMA
FS (A) := Pr

[
ExpUF-fCMA

FS (A) = 1
]

is negligible in security parameter κ, where ExpUF-fCMA
FS (A) is described in Fig. 3.4.

Trivial Faults on the Root Input Wire Values We remark the existence of two faults
on the left most input wires in Fig. 3.1, which we do not explicitly consider in our model,
but its (in)security can be proven trivially. First, faulting message m before it is loaded
by the signing oracle can be regarded as a situation where the adversary queries a faulty
message m̂ to begin with, since the oracle stores m̂ in M . Hence we can just treat such
a query as one to non-faulty signing oracle (OSign). Second, the adversary could easily
recover the entire secret key after roughly |sk| signing queries by injecting set_bit faults
to sk before it is loaded by the signing oracle, and the faulty secret key s̃k is globally used
throughout the signing operation: for example, if the most significant bit of sk is set to
0 at the very beginning of signing and its output still passed the verification, then the
adversary can conclude that sk has 0 in the most significant bit with high probability. In
doing so, the adversary iteratively recovers sk bit-by-bit if the fault is transient. The attack
above is essentially a well-known impossibility result by Gennaro et al. [GLM+04] and
such an attack can be practically achieved with ineffective faults. To overcome this issue,
one would require an additional strict assumption on the upper-bound of faulty signing

54 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

queries [DFMV17], or the signing algorithm needs to have some sophisticated features like
self-destruct or key-updating mechanisms, which, however, are not yet widely implemented
in real-world systems and are beyond the scope of this paper.
Winning Condition of Fault Adversaries As described in Fig. 3.4, the UF-fCMNA
experiment keeps track of possibly faulty messages m̂ instead of queried messages m, and
it does not regard σ∗ as valid forgery if it verifies with m̂ that A caused in prior queries.
This may appear artificial, but we introduced this condition to rule out a trivial forgery
“attack”: if the experiment only keeps track of queried message mi in i-th query, and
adversaries target f5 at mi as hash input, they obtain a valid signature σ̂i on message m̂i,
yet m̂i is not stored in a set of queried messages M . Hence the adversary can trivially
win UF-fCMNA game by just submitting (σ̂i, m̂i), which of course verifies. This is not an
actual attack, since what A does there is essentially asking for a signature on m̂i from the
signing oracle, and hence outputting such a signature as forgery should not be considered
as a meaningful threat.

Note that the OFaultHSign oracle in Fig. 3.4 stores all queried messages in the same set
M , whether the adversary A decides to inject a fault (i.e. φ ∈ {set_biti,b, flip_biti})
or not (i.e. φ := Id), and so a forgery (m∗, σ∗) output by A is not considered valid even
if m∗ was only queried to OFaultHSign to obtain a faulty invalid signature. For some
signature algorithms and fault types this is required; for example with Fiat–Shamir type
signatures (derived from a commitment recoverable identification [KLS18]), one can query
OFaultHSign to get a signature (e, z) with a single bit-flip in z, and create a valid forgery
by unflipping the bit.
Validity of Oracle Output The signature output by OFaultHSign does not need to verify,
but it may need to be well-formed in some way. Typically we show with a hybrid argument
that OFaultHSign can be simulated without use of the private key, in a similar way to
OHSign. In order for simulated outputs of OFaultHSign to be indistinguishable from real
outputs, simulated signatures must be correctly distributed. In [BDF+14, CM09], the
security proof shows that the faulty signature is statistically close to a value drawn from
the uniform distribution, so OFaultHSign can output a random value. For the Fiat–Shamir
type signature schemes we study this is not the case, for some fault types the real output
of OFaultHSign verifies with an appropriately faulted hash function, and our proofs must
take care to maintain these properties when simulating OFaultHSign.

3.4 Security of Hedged Signatures Against Fault Attacks
In this section we establish the (in)security of the class of hedged Fiat–Shamir signatures
schemes. We give here a short overview of the main intuition behind the results in Table 3.1:
f0 faults (on the (message, nonce) pair which is input to the hedged-extractor) cannot be
tolerated since they allow the adversary to get two signatures with the same randomness.
On the other hand f1 faults (on the secret key input to the hedged-extractor) can be
tolerated since they do not significantly change the distribution input to the hedged-
extractor. If the adversary faults the output of the hedged extractor (using f2), we cannot
prove security in general (and we can list concrete attacks e.g., against the Schnorr signature
schemes), but we can prove security for the specific case of Picnic2, since the output of the
hedged-extractor is not used directly, but is given as input to a PRG – thus the small bias
is “absorbed” by PRG security. We remark that, while present, this attack is much less
devastating than the large randomness bias LRB attack on deterministic schemes (described

3.4. SECURITY OF HEDGED SIGNATURES AGAINST FAULT ATTACKS 55

Table 3.1: Summary of results for UF-fCMNA security of the hedged Fiat–Shamir type
construction, for all fault types. 3 indicates a proof of UF-fCMNA security, and 7 indicates
an attack or counterexample.

Fault type ID is subset-revealing ID not subset-revealing XEdDSA Picnic2
f0 7 Lemma 3.11 7 7

f1 3 Lemma 3.4 3 Corollary 3.1 3 Corollary 3.3
f2 7 Lemma 3.13 7 3 Lemma 3.19
f3 7 Lemma 3.12 7 7 §3.6
f4 3 Lemma 3.10 7 Lemma 3.15 7

3 Corollary 3.3
f5 3 Lemma 3.7

3 Corollary 3.1f6 3 Lemma 3.8
f7 3 Lemma 3.9 7 Lemma 3.14

f8, f9, f10 3 Lemma 3.6

in Section 3.2.3). With the LRB attack, the adversary only needs two signatures to recover
the full key, while the attack we will show on Schnorr signature requires a significant amount
of faulty biased signatures as input in practice. This indicates that hedged constructions
do, to some extent, mitigate the effect of faults on the synthetic randomness.

The hedged approach does not help when the adversary faults the input to the commit-
ment function (via f3), since in this case the adversary can attempt to set the bits of the
secret key one at the time and check if the output signature is valid or not. Note that in
some kinds of ID schemes like Schnorr (known as input-delayed protocols [CPS+16a]) the
secret key is not used in the commitment function. Faulting the input of the commitment
function can still lead to insecurity, e.g., in Schnorr the adversary can bias the randomness,
which in turns leads to a total break of the signature scheme. Next, the adversary can fault
the output of the commitment function (via f4): this leads to insecurity in general, e.g.,
in Schnorr this also leads to randomness bias. However, for a large class of ID schemes
(which we call subset-revealing), including Picnic2, this fault does not lead to insecurity:
intuitively either the adversary faults something that will be output as part of the response
(which can easily be simulated by learning a non-faulty signature and then applying the
fault on the result), or it is not part of the output and therefore irrelevant. Attacking the
input or the output of the random oracle used to derive the challenge (f5 and f6) does not
lead to insecurity, since the distribution of the random oracle does not change due to the
fault (note that this would not be the case for deterministic signatures, where this kind of
fault would be fatal). Faults against the input of the response function (via f7) can break
non-subset revealing signatures (once again, we can show that this fault can be used to
break Schnorr signatures), but do not help the adversary in the case of a subset-revealing
signature like Picnic2: similar to the case of f4 faults, we use the fact that if the response
function only outputs subsets of its input, faulting part of the input either has no effect
or can be efficiently simulated given a non-faulty signature. Similarly, faults against the
output of the response function or the input/output of the serialization function (fault
types f8, f9, f10) can also be easily simulated from a non-faulty signature.

We expand this high-level intuition into full proofs by carefully measuring the concrete
security loss in the reductions which is introduced by the different kind of faults. More
precisely, we present a concrete reduction from UF-KOA to {f1, f4, . . . , f10}-UF-fCMNA
security for schemes derived from subset-revealing ID schemes, and to {f1, f5, f6, f8, f9, f10}-
UF-fCMNA when ID is non-subset-revealing. Our theorems generalize and adapt results

56 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

from [BPS16] and [KMP16] without introducing significant additional concrete security
loss. Then in Section 3.4.7, we describe attacks for the remaining fault types (f0, f2 and f3),
completely characterizing the security of generic R2H[FS[ID,CSF],HE] signature schemes
for fault types f0, . . . , f10.

3.4.1 Main Positive Result

Theorem 3.1 (UF-KOA→ UF-fCMNA). Let ID be a canonical identification protocol and
CSF be a canonical serialization function for ID. Suppose ID satisfies the same properties
as in Lemma 3.2 and it is subset revealing, and moreover, let us assume that A does not
query the same (m,n) pair to OFaultHSign more than once. Then if FS := FS[ID,CSF] is
UF-KOA secure, HFS := R2H[FS,HE] is {f1, f4, . . . , f10}-UF-fCMNA secure in the random
oracle model. Concretely, given {f1, f4, . . . , f10}-adversary A against HFS running in time
t, and making at most Qs queries to OFaultHSign, Qh queries to H and Qhe queries to HE,
one can construct another adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·

(
AdvUF-KOA

FS (B) + (Qs +Qh)Qs
2α−1 +Qs · εHVZK

)
,

where B makes at most Qh queries to its hash oracle, and has running time t plus Qhe · |sk|
invocations of Sign and Verify of FS. Moreover, if we do not assume the subset-revealing
property of ID and assume all the other conditions above, then we have that HFS is
{f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. The proof is two-fold. See Lemmas 3.4 and 3.5.

For the rest of this section we will assume that ID satisfies the properties in Lemma 3.2.
As a first step, we give a reduction from UF-fCMA to UF-fCMNA security, and then we later
give a reduction from UF-KOA to UF-fCMA. We observe that the UF-CMA-to-UF-CMNA
reduction in Lemma 3.3 is mostly preserved, even in the presence of 1-bit faults on sk as a
hedged extractor key. However, our proof shows that such a fault does affect the running
time of the adversary because the reduction algorithm needs to go through all secret key
candidates queried to random oracle and their faulty bit-flipped variants. We present a
proof in the full version.

Lemma 3.4 (F -UF-fCMA → F ∪ {f1}-UF-fCMNA). Suppose the fault adversary A does
not query the same (m,n) pair to OFaultHSign more than once. If FS := FS[ID,CSF]
is F -UF-fCMA secure, then HFS := R2H[FS,HE] is F ′-UF-fCMNA secure in the random
oracle model, where F ′ = F ∪ {f1}. Concretely, given an F ′-adversary A against HFS
running in time t, and making at most Qs queries to OFaultHSign, Qh queries to H and
Qhe queries to HE, one can construct F -adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·AdvUF-fCMA

FS (B),

where B makes at most Qs queries to its signing oracle OFaultSign and Qh queries to its
hash oracle, and has running time t′ ≈ t+Qhe · |sk|.

Remarks. Our reduction above crucially relies upon the assumption that adversaries
are not allowed to query the same (m,n) pair. Without this condition, OFaultHSign must
return a faulty signature derived from the same randomness ρ if the same (m,n) is queried

3.4. SECURITY OF HEDGED SIGNATURES AGAINST FAULT ATTACKS 57

twice, and thus one could not simulate it using OFaultSign as an oracle, since OFaultSign
uses the fresh randomness even if queried with the same message m. In fact, by allowing the
same (m,n) query the hedged construction HFS degenerates to a deterministic scheme and
thus the SSND or LRB type fault attacks would become possible as we saw in Section 3.2.3.
For the same reason, once we allow the adversaries to mount a fault f0 on (m,n) right
before HE is invoked during the signing query, the security is completely compromised. We
will revisit this issue as a negative result in Lemma 3.11.

Lemma 3.5 (UF-KOA→ UF-fCMA). Suppose ID is subset revealing. If FS := FS[ID,CSF]
is UF-KOA secure, then FS is {f4, . . . , f10}-UF-fCMA secure in the random oracle model.
Concretely, given {f4, . . . , f10}-adversary A against FS running in time t, and making at
most Qs queries to OFaultSign, Qh queries to H, one can construct another adversary B
against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) + (Qs +Qh)Qs
2α−1 +Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t. If we do not
assume the subset-revealing property of ID and assume all the other conditions above, then
we have that FS is {f5, f6, f8, f9, f10}-UF-fCMA secure.

Proof. We obtain the results by putting together Lemmas 3.6 to 3.10 for FS derived from
subset-revealing ID, and Lemmas 3.6 to 3.8 for FS derived from non-subset-revealing ID.
The proofs for these lemmas appear in the full version.

Our proof extends the UF-KOA-to-UF-CMA reduction from Lemma 3.2. We show
that UF-KOA security of a randomized Fiat–Shamir signature scheme FS can be broken
by a successful UF-fCMA adversary A by constructing an adversary B that uses A as a
subroutine and simulates OFaultSign without using sk. We denote the random oracle and
hash table in UF-fCMA experiment (resp. UF-KOA experiment) by H and HT (resp. H′
and HT′).
Preparation of Public Key Upon receiving pk in the UF-KOA game, B forwards pk to
A.
Simulation of Random Oracle Queries Upon receiving a random oracle query H(a,
m, pk) from A, B forwards the input (a,m, pk) to its own random oracle (H′ from the
UF-KOA game) and provides A with the return value.
Simulation of Faulty Signing Queries Suppose A chooses to use a fault function fji
in each faulty signing oracle query i ∈ [Qs]. Then B answers i-th query by simulating the
signature on mi (or m̂i if A chooses to apply f5 to the message as hash input) using only pk
as described in the lemma for fji . Notice that the simulations are independent except they
share the random oracle H and the set M storing (possibly faulty) queried messages. The
hash input (âi, m̂i, p̂k) in each signature simulation has at least (α− 1) bits of min-entropy
(see the simulation in Lemma 3.7). Because HT has at most Qh + Qs existing entries,
B fails to program the random oracle with probability at most (Qh +Qs)/2α−1 for each
query. Moreover, A distinguishes the simulated signature from the one returned by the
real signing oracle OFaultHSign with probability at most εHVZK for each query, since we
use the special c/s/p-HVZK simulatorM to derive a signature in every simulation.

Recalling that the number of signing queries is bounded by Qs, and by a union bound,
A overall distinguishes its simulated view from that in UF-fCMA game with probability at

58 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

most
(Qh +Qs)Qs

2α−1 +Qs · εHVZK .

Forgery Suppose that at the end of the experiment A outputs its forgery (m∗, σ∗) that
verifies and m∗ /∈M = {m̂i : i ∈ [Qs]}. (Recall from Fig. 3.4 that M stores possibly faulty
messages m̂i here instead of queried messages mi, and thus A cannot win the game by
simply submitting a signature on some faulty message that has been used for random oracle
programming.) This means that the reconstructed transcript (a∗, e∗, z∗) ← CDF(σ∗, pk)
satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by signing oracle
simulation since m∗ is fresh, i.e., m∗ 6∈M . Hence we ensure that e∗ = HT[a∗,m∗, pk] has
been directly set by A, and e∗ = HT′[a∗,m∗, pk] holds due to the hash query simulation.
This implies (m∗, σ∗) is a valid forgery in the UF-KOA game as well.

3.4.2 Faulting Serialization Input/Output and Response Output

As a warm-up, we begin with the simplest analysis where faults do not have any meaningful
impact on the signing oracle simulation. As we will show below, faulting with f8, f9 and
f10 has no more security loss than the plain UF-KOA-to-UF-CMA reduction [KMP16] does.

Lemma 3.6 (UF-KOA → {f8, f9, f10}-UF-fCMA (informal)). If FS := FS[ID,CSF] is
UF-KOA secure, then FS is {f8, f9, f10}-UF-fCMA secure in the random oracle model.

Remark As we briefly remarked after Definition 3.5, Lemma 3.6 holds for any instantiation
of serialization as long as CSF and CDF are efficiently computable.

3.4.3 Faulting Challenge Hash Input

Recall that f5 is the fault type that allows the attacker to fault the input (a,m, pk) to the
hash function used to compute the challenge. Here we prove that randomized Fiat–Shamir
signature schemes are secure against this type of fault attack, under the same conditions
required for the plain UF-KOA-to-UF-CMA reduction [KMP16]. Note that the proof of
lemma below introduces a slight additional security loss compared to the plain UF-KOA-to-
UF-CMA reduction because set_bit faults to the hash input increase the failure probability
of random oracle programming.

Lemma 3.7 (UF-KOA → {f5}-UF-fCMA (informal)). If FS := FS[ID,CSF] is UF-KOA
secure, then FS is {f5}-UF-fCMA secure in the random oracle model.

3.4.4 Faulting Challenge Hash Output

Recall that f6 is the fault type that allows the attacker to fault the challenge hash function
output, i.e., he can fault the bit string e = H(a,m, pk). We show that, unlike the fault
with f5, this type of fault does not introduce any additional loss in concrete security as
long as the Resp function fails for invalid challenges outside the challenge space DH .

3.4. SECURITY OF HEDGED SIGNATURES AGAINST FAULT ATTACKS 59

Lemma 3.8 (UF-KOA → {f6}-UF-fCMA). If FS := FS[ID,CSF] is UF-KOA secure, then
FS is {f6}-UF-fCMA secure in the random oracle model.

Remarks The above lemma relies on the fact that faulty ẽi is necessarily a “well-formed”
challenge. For example, the challenge in some subset-revealing schemes has a specific
structure (e.g., a list of pairs (ci, pi) where the ci are distinct, as in Picnic2). Computing
Resp with a malformed challenge may cause σ to leak private information. This is why we
required Definition 3.1 to have the condition that Resp validates ẽi ∈ Dh and otherwise
returns ⊥. This way, the signing algorithm does not leak information when a malformed
challenge is input to the response phase, and eventually outputs ⊥ as a signature because
CSF is sound with respect to invalid response (see Definition 3.4).

Note that the proof can be generalized to the multi-bit fault setting. More specifically,
the random oracle programming becomes unnecessary for output replacement faults (i.e.
f6 applies set_bit to every bit of e) because in that case the fault adversary would no
longer be able to observe any relation between faulty ẽi and the original, unfaulty e.

3.4.5 Faulting Response Input

Next we prove the security against tampering function f7, which lets an attacker fault
the input (sk, e, St) to the Resp function. We only guarantee security assuming that the
signature scheme is based on a subset revealing identification protocol (see Definition 3.3),
and Resp and CSF make sure to rule out invalid challenge and response, respectively. As
we will see in the next section, Picnic2 satisfies these additional properties.

Lemma 3.9 (UF-KOA → {f7}-UF-fCMA). Suppose ID is subset revealing. If FS :=
FS[ID,CSF] is UF-KOA secure, then FS is {f7}-UF-fCMA secure in the random oracle
model.

Remark Intuitively, subset revealing ID schemes are secure against faults on St because the
adversary only obtains what they could have computed by changing non-faulty signatures
by themselves. On the other hand, the Schnorr signature scheme is not secure against
tampering with f7 and we describe concrete fault attacks in Lemma 3.14.

As we remarked after Definition 3.3, one can consider a highly inefficient version of
Schnorr signature that enumerates all possible responses in St and opens one of them. In
doing so, the Resp function avoids any algebraic operations involving sk and ρ, and we can
mitigate the risk of faulty response input attacks described above. This countermeasure is
of course impractical since the challenge space is too large, but it illustrates a concrete case
where subset revealing ID schemes are more robust against fault attacks, in our model.

3.4.6 Faulting Commitment Output

Recall that a fault of type f4 allows the attacker to fault the output of Com(sk; ρ), the
commitment function in the first step of the ID scheme. Here we prove that randomized
Fiat–Shamir signature schemes are secure against this type of fault attack, under the same
conditions as ones in Lemma 3.9.

Lemma 3.10 (UF-KOA → {f4}-UF-fCMA). Suppose ID is subset revealing. If FS :=
FS[ID,CSF] is UF-KOA secure, then FS is {f4}-UF-fCMA secure in the random oracle
model.

60 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

3.4.7 Negative Results

Here we show that fault attacks of type f0, f2 and f3 are not mitigated by the hedged
construction for an ID scheme with the same properties as in Theorem 3.1.

Lemma 3.11. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but not {f0}-UF-fCMNA secure.

Proof. We consider the Schnorr scheme that returns (e, z) as a signature , for which
FS[ID,CSF] is known to be UF-CMA secure and therefore R2H[FS[ID,CSF],HE] is UF-CMNA
secure due to Lemma 3.3. Our {f0}-adversary’s strategy is as follows. The adversary
first calls OFaultHSign with some (m,n) without fault (i.e. φ = Id) to obtain a legitimate
signature (e, z). Next, the adversary calls OFaultHSign with φ = flip_biti, j = 0 and
(m′, n), where m′ is identical to m except at the i-th bit. This way, it can fault m′ back to
m before the invocation of HE and hence the signature is derived from the same ρ as in
the previous query, while the challenge and response are different since e′ = H(a,m′, pk)
and z = ρ+ e′ · sk mod q. Hence we can recover sk with the SSND attack in Section 3.2.3
and break the scheme.

Lemma 3.12. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but not {f3}-UF-fCMNA secure.

Proof. We describe a simple attack that works for the Picnic ID scheme. Recall that f3 is
applied to input of Com(sk; ρ). When querying OFaultHSign, the attacker uses set_bit to
set the i-th bit of sk, denoted ski to 0, then observes whether the signature output is valid.
If so, then the true value of ski is 0, and if not, then ski is one. By repeating this for each
of the secret key bits, the entire key may be recovered. Some ID schemes may include
internal checks and abort if some computations are detected to be incorrect relative to the
public key, in this case the attacker checks whether OFaultHSign aborts.

Note that Lemma 3.12 only applies to ID schemes where sk is used by the Com function.
For the Schnorr scheme and other so-called input delayed protocols [CPS+16a], sk is only
used by the Resp function. In this way subset-revealing ID schemes and input delayed ID
schemes have the opposite behavior, since subset-revealing schemes do not use sk in the
Resp function, but they must use it in the Com function.

The sensitivity of ephemeral randomness ρ in Schnorr-like schemes is well known,
and once the attacker obtains sufficiently many biased signatures, the secret key can be
recovered by solving the so-called hidden number problem (HNP) [BV96]. Previous works
have shown that even a single-bit bias helps to recover sk by making use Bleichenbacher’s
solution to HNP [Ble00, AFG+14]. However, the currently known algorithms for the HNP
do not give an asymptotically efficient attack, they only reduce the concrete security of
the scheme sufficiently to allow a practical attack on some parameter sets. For instance,
with the current state-of-the-art algorithm based on Bleichenbacher’s attack found in
the literature [TTA18a, Theorem 2], one can practically break 1-bit biased signatures
instantiated over 192-bit prime order groups, using 229.6 signatures as input, and with 229.6

space and 259.2 time, which is tractable for computationally well-equipped adversaries as
of today.

To attack Schnorr-like schemes with f3, the adversary would instead target the ran-
domness ρ to cause a single-bit bias in it, and this situation is essentially same as faulting

3.4. SECURITY OF HEDGED SIGNATURES AGAINST FAULT ATTACKS 61

with f2. Such an attack would be also powerful enough to recover the entire signing key,
which we describe below.

Lemma 3.13. Relative to an oracle for the hidden number problem, there exist a non-
subset revealing canonical ID scheme such that R2H[FS[ID,CSF],HE] is UF-CMNA-secure,
but neither {f2}-UF-fCMNA nor {f3}-UF-fCMNA secure.

Proof. We describe an attack that works for the Schnorr signature scheme. Recall that
both f2 and f3 can tamper with ρ in Schnorr, as its St contains the randomness ρ. If f2
or f3 is set_bit and always targets at the most significant bit of ρ to fix its value, the
attacker can introduce 1-bit bias in ρ.

Relative to an oracle for the HNP, the Schnorr scheme with unbiased ρ remains secure,
however, the scheme with biased ρ is broken. We must assume here that the HNP oracle
does not help an attacker break the Schnorr scheme with unbiased nonces (otherwise the
Theorem is trivial). It is easy to see that the HNP with uniformly random nonces does
not give a unique solution – the adversary is given a system of Qs equations with Qs + 1
unknowns, so a direct application of the HNP oracle does not help. However, there may be
other ways to use the HNP oracle, so we must make the assumption.

For fault types f7 and f4, we have shown that R2H[FS[ID,CSF],HE] is secure assuming
ID is subset-revealing. The following two lemmas give counterexamples when ID is not
subset revealing, showing that canonical ID schemes are not generically secure for faults f7
and f4.

Lemma 3.14. There exist non-subset-revealing canonical ID schemes such that R2H[FS[ID,
CSF],HE] is UF-CMNA-secure, but not {f7}-UF-fCMNA secure.

Proof. We describe two attacks that work for the Schnorr signature scheme.
• If f7 is set_bit and targeted at sk, the adversary can use the strategy of Lemma 3.12

to learn each bit of sk by checking whether the faulty signatures pass verification.
• If f7 is flip_bit and targeted at the most significant bit of St = ρ, the adversary

obtains (e, z′) such that z′ = e·sk+f7(ρ), and he can recover the “faulty” commitment
a′ = [f7(ρ)]G. Recall that the non-faulty commitment a = [ρ]G satisfies H(a,m, pk) =
e, so the adversary can learn 1-bit of ρ by checking whether H(a′+[2`ρ−1]G,m, pk) = e
or H(a′ − [2`ρ−1]G,m, pk) = e holds, where `ρ is the bit length of ρ. Since we now
have the most significant bit of ρ, we use the same argument as in Lemma 3.13 to
show the scheme is vulnerable to fault attacks.

Lemma 3.15. There exist non-subset-revealing canonical ID schemes such that R2H[FS[ID,
CSF],HE] is UF-CMNA-secure, but not {f4}-UF-fCMNA secure.

Proof. Recall that f4 is applied to (a, St), the output of Com. In the Schnorr signature
scheme, St contains the per-signature ephemeral value ρ, which is the output of the hedged
extractor. Therefore, the same attack as described in Lemma 3.14 for f7-faults can be
mounted with an f4-fault.

62 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

3.5 Analysis of XEdDSA
In this section we apply the results of Section 3.4 to the XEdDSA signature scheme.
The scheme is presented in the full version [AOTZ19]. The associated ID scheme is the
Schnorr ID scheme (denoted ID-Schnorr). Then we define Schnorr := FS[ID-Schnorr,CSF]
and XEdDSA := R2H[Schnorr,HE], where CSF returns (a, z). We start by establishing
some well-known properties of ID-Schnorr. Proof is given in the full version [AOTZ19]. As
noted in Section 3.2 ID-Schnorr is not subset-revealing.

Lemma 3.16. ID-Schnorr is perfect HVZK (therefore εHVZK = 0) and has 2λ bits of
min-entropy.

UF-KOA Security Let AdvUF-KOA
Schnorr (A) be the (concrete) UF-KOA security of Schnorr

against an adversary A running in time t. As non-hedged XEdDSA is identical to Schnorr
in the UF-KOA setting, the concrete analysis for Schnorr of [KMP16, Lemmas 3.5-3.7]
and [PS00a, Lemma 8] are applicable. We do not repeat those results here (as they are
lengthy and don’t add much to the present paper), but instead state our results in terms
of AdvUF-KOA

Schnorr (A). We can now apply the results of Section 3.4.

Corollary 3.1. XEdDSA is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. We’ve shown above that ID-Schnorr is perfect HVZK (so εHVZK = 0) and has α = 2λ
bits of min-entropy. Then we can apply Theorem 3.1, to obtain

AdvUF-fCMNA
XEdDSA (A) ≤ 2

(
AdvUF-KOA

Schnorr (B) + (Qs +Qh)Qs
22λ−1

)

Remaining fault types. We now consider the faults of type f0, f2, f3, f4, and f7 where
we can’t prove security. For each of these, we have given an attack elsewhere in the paper,
for Schnorr signatures, but that also applies to XEdDSA. For type f0 see Lemma 3.11,
for types f2 and f3 see Lemma 3.13, for type f4 see Lemma 3.15 and for type f7 see
Lemma 3.14.

3.6 Analysis of Picnic2
In this section we analyze the Picnic2 variant of the Picnic signature scheme using our formal
model for fault attacks. Since Picnic is constructed from a subset-revealing ID scheme,
more of the results from Section 3.4 apply, reducing our effort in this section. We use
ID-Picnic2 to denote the ID scheme, and Picnic2 := FS[ID-Picnic2,CSF] and HS-Picnic2 :=
R2H[Picnic2,HE] to denote the randomized and hedged signature schemes. Proofs for this
section, and details of the signature scheme are in the full version [AOTZ19]. We begin
with some general properties of Picnic2.
ID-Picnic2 is a subset-revealing ID scheme. Note that its St consists of {hj , h′j ,
sd∗j , {ẑj,α}, stj,i, comj,i,msgsj,i}j∈[M],i∈[n] and Resp simply reveals a subset of it depending
on a challenge C and P.
The Picnic2 specification is an instance of R2H. The specification recommends a
hedging construction that is an instance of the R2H construction from Section 3.3. In this

3.6. ANALYSIS OF PICNIC2 63

case, the salt and random seeds are derived deterministically from sk‖m‖pk‖n where n is a
2κ-bit random value (acting as the nonce in the notation of Section 3.3). The function HE
is instantiated with the SHA-3 based derivation function SHAKE. The security analysis
in [ZCD+19] applies to the randomized version of the signature scheme, so we must use
Lemma 3.3 to establish UF-CMNA security of the hedged variant.

Lemma 3.17. For security parameter κ, ID-Picnic2 has α ≥ 2κ+ 256 bits of min-entropy.

The next corollary shows that Picnic2 is secure against key-only attacks, and it follows
from the unforgeability security proof of Picnic2 from [ZCD+19].

Corollary 3.2. The signature scheme Picnic2 is UF-KOA secure, when the hash functions
H0, H1, H2 and G are modeled as random oracles with 2κ-bit outputs, and key generation
function Gen is (t, εOW)-one-way.

In particular, we have that

AdvUF-KOA
Picnic2 (A) ≤ 3Qh2

22λ + 2εOW + Qh
2λ .

Lemma 3.18. ID-Picnic2 is a special c-HVZK proof, under the following assumptions:
the hash functions H0, H1 and H2 are modeled as random oracles, key generation is a
(t, εOWF)-secure one-way function, and the PRG is (t, εPRG)-secure. Simulated transcripts
are computationally indistinguishable from real transcripts, and all polynomial-time distin-
guishing algorithms succeed with probability at most

εHVZK ≤ Qs
(

(n+ 2)τ · εPRG + M

22λ + εOWF

)
.

where q0 and q2 are the number of queries to H0 and H2, Qs is the number of transcripts
that are simulated, λ is the security parameter, and (M,n, τ) are parameters of the scheme.

We can now apply our results from Section 3.4.

Corollary 3.3. HS-Picnic2r is {f1, f4, . . . , f10}-UF-fCMNA secure.

Proof. Recall that by Corollary 3.2, Picnic2r is UF-KOA secure with

AdvUF-KOA
Picnic2r (A) ≤ 3Qh2

22λ + 2εOW + Qh
2λ

and the min-entropy α is 2κ+ 256 as shown in Lemma 3.17.
We can apply Theorem 3.1, to obtain

AdvUF-fCMNA
HS-Picnic2 (A) ≤ 6Qh2

22λ + 4εOW + 2Qh
2λ + (Qs +Qh)Qs

22λ+254 + 2Qs · εHVZK ,

where εHVZK is given in Lemma 3.18.

Fault type f2 Recall that f2 is a fault on ρ, the output of the hedged extractor. Intuitively,
HS-Picnic2 is {f2}-UF-fCMNA secure since ρ is not used directly, ρ is the list of sd∗j values,
which are used as input to a PRG when deriving the sdi,j values. Applying a 1-bit fault
to a sd∗j value reduces the min-entropy by at most one bit, so only a small change to the
security proof and analysis is required. Concretely we have:

64 CHAPTER 3. SECURITY OF HEDGED FIAT-SHAMIR SIGNATURES

Lemma 3.19. HS-Picnic2 is {f2}-UF-fCMNA secure. AdvUF-fCMNA
HS-Picnic2 (A) is the same as

given in Corollary 3.3, except that α is reduced by 1.

Fault type f3 Recall that f3 faults are applied to com(f3(sk; ρ)). By setting bits of sk,
the attacker can recover sk with an IFA.

3.7 Concluding Remarks
This paper explored the effects of bit-tampering fault attacks on various internal values in
hedged Fiat–Shamir signing operations, within the provable security methodology. Our
security model is general enough to capture a large class of signatures, but also fine-grained
enough to cover existing attacks surveyed in Section 3.2.3. We remark, however, that
there are several more advanced, yet practically relevant fault types that are not covered
by our model: 1) faulting global parameters, 2) multiple bit and word faults, 3) faults
within the com and Resp functions, 4) multiple faults per signature query, and 5) persisting
faults. A detailed discussion for each is given in the full version [AOTZ19], to illustrate the
limitations of our analysis. Each of these issues makes an interesting direction for future
work.

Part II

New Constructions

65

Chapter 4

Two-Round Multi-Party Signing
from Lattices

4.1 Introduction

In recent years, distributed signing protocols have been actively researched, motivated by
many new applications for instance in the blockchain domain. One of the main motivations
to construct a distributed signature is reducing the risk of compromising the secret key,
which could occur in various ways, for instance as a result of attacks on cryptographic
devices. In this paper, we study two similar classes of distributed signing protocols that can
be constructed from standard lattice-based computational hardness assumptions, namely
n-out-of-n distributed signature and multi-signature schemes.

n-out-of-n signature. An n-out-of-n signature is a special case of general t-out-of-n
threshold signature. At a high level, the parties involved in n-out-of-n signature first invoke
a key generation protocol in a way that each individual party Pj learns a share skj of the
single signing key sk, but sk is unknown to anyone, and then they interact with each other
to sign the message of interest. The required security property can be informally stated as
follows: If all n parties agree to sign the message then they always produce a single signature
that can be verified with a single public key pk; if at most n− 1 parties are corrupted, it
is not possible for them to generate a valid signature. Several recent works have studied
threshold versions of ECDSA, arguably the most widely deployed signature scheme, both
in the 2-out-of-2 variant [Lin17a, DKLs18, CCL+19] and in the more general t-out-of-n
case [GGN16, GG18, LN18, DKLs19, DOK+20, CGG+20, CCL+20, DJN+20, GKSS20].

However it is well known that ECDSA does not withstand quantum attacks since it is
based on discrete log, and it is therefore important to study post-quantum alternatives
which support threshold signing. Despite this, very few works have considered n-out-of-n (or
t-out-of-n) lattice-based signatures. Bendlin et al. [BKP13] proposed a threshold protocol
to generate Gentry–Peikert–Vaikuntanathan signature [GPV08]; Boneh et al. [BGG+18]
developed a universal thresholdizer that turns any signature scheme into a non-interactive
threshold one, at the cost of using relatively heavy threshold fully homomorphic encryption.

Fiat–Shamir with aborts. Neither of the above previous papers investigated signatures
following the Fiat–Shamir with Aborts (FSwA) paradigm due to Lyubashevsky [Lyu09,
Lyu12], which was specifically designed for lattice-based signatures and is nowadays one of
the most efficient and popular approaches to constructing such schemes. Recall that in

67

68 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

standard Fiat-Shamir signatures, the scheme is based on an underlying 3-move Σ-protocol
where transcripts are of form (w, c, z) and where c is a random challenge. This interactive
protocol is then turned into a non-interactive signature scheme by choosing the challenge as
the hash of the first message w and the message to be signed. The FSwA paradigm follows
the same approach, with the important difference that the signer (prover) is allowed to
abort the protocol after seeing the challenge. Only the non-aborting instances are used for
signatures, and it turns out that this allows the signer to reduce the size of the randomness
used and hence reduces signature size. This comes at the cost of marginally larger signing
time because some (usually quite small) fraction of the protocol executions are lost due to
aborts.

Examples of single-user schemes based on FSwA include Dilithium [LDK+19] and
qTESLA [BAA+19], which are round-3 and round-2 candidates of the NIST Post-Quantum
Cryptography Standardization process. Cozzo and Smart [CS19] recently estimated the
concrete communication and computational costs required to build a distributed version of
these schemes by computing Dilithium and qTESLA with generic multi-party computation.
They pointed out inherent performance issues with MPC due to the mixture of both linear
and non-linear operations within the FSwA framework.

Given all this, an obvious open question is to construct secure n-out-of-n protocols
specifically tailored to the FSwA, while also achieving small round complexity.
Multi-signature. A multi-signature protocol somewhat resembles n-out-of-n signature
and allows a group of n parties holding a signing key sk1, . . . , skn to collaboratively sign the
same message to obtain a single signature. However, multi-signature protocols differ from
n-out-of-n signing in the following ways: (1) there is no dedicated key generation protocol,
and instead each party Pj locally generates its own key pair (pkj , skj) and publish pkj
before signing (so-called the plain public-key model [BN06]), (2) the group of signing parties
is usually not fixed, and each party can initiate the signing protocol with a dynamically
chosen set of parties associated with L = {pk1, . . . , pkn}, and (3) the verification algorithm
usually doesn’t take a single fixed public key, and instead takes a particular set of public
keys L that involved in the signing protocol. Hence, roughly speaking, multi-signatures
have more flexibility than n-out-of-n signatures in terms of the choice of co-signers, at the
cost of larger joint public key size and verification time (unless more advanced feature like
key aggregation [MPSW19] is supported).
Schnorr vs FSwA. There is a long line of research that starts from Schnorr’s signature
scheme [Sch90] and follows the standard Fiat–Shamir paradigm to build distributed
signatures [SS01, NKDM03, AF04, GJKR07, KG20] and multi-signatures [MOR01, BN06,
BCJ08, MWLD10, STV+16, MPSW19, NRSW20, NRS21, AB21, BD21]. In particular,
Drijvers et al. [DEF+19] recently discovered a flaw of the existing two-round Schnorr-
based multi-signatures, with a novel concurrent attack relying on the generalized birthday
algorithm of Wagner [Wag02]. They accordingly proposed mBCJ scheme, a provably secure
variant of Bagherzhandi et al.’s BCJ scheme [BCJ08].

Unlike distributed n-out-of-n signatures, several three or four-round multi-signatures
based on FSwA are already present in the literature. Bansarkhani and Sturm [ES16]
extended Güneysu–Lyubashevsky–Pöppelmann (GLP) [GLP12] signature and proposed
the first multi-signature following the FSwA paradigm, which was recently followed by
multiple similar variants [MJ19, TLT19, TE19, FH19, FH20]. Relying on the syntactic
similarities between Schnorr and FSwA-style signatures, these protocols essentially borrow
the ideas of Schnorr-based counterparts; for instance, [ES16] can be considered as a

4.1. INTRODUCTION 69

direct adaptation of Bellare and Neven’s three-round Schnorr-like multi-signature [BN06].
However, as explained below, the security proofs of all these protocols are either incomplete
or relying on a non-standard hardness assumption, where the underlying problem only
emerges in the Fiat–Shamir with aborts setting. Therefore, we are also motivated to
construct a provably secure multi-signature protocol within this paradigm, while making
the most of useful observations from the discrete log setting.
Issue with “aborts”. We first observe that there is an inherent issue when constructing
distributed FSwA signatures. Just like earlier constructions in the discrete log setting [BN06,
NKDM03] previous FSwA multi-signatures ask all parties to start doing what is essentially a
single-user FSwA signature, and always reveal the first “commit” message of the underlying
Σ-protocol. Then all these messages are added up and the sum is hashed, together with the
message to be signed, in order to obtain the challenge. This means that all executions are
revealed, whether they abort or not. An important issue with the FSwA approach is that,
currently there is no known general way to prove the underlying Σ-protocol zero-knowledge
in case of aborts [BCK+14, §3.2],[ESS+19, §4],[BBE+18, BBE+19],[Lyu19, p.26]. As a
result, the signer should not reveal any of the aborted executions since otherwise the
scheme cannot be proved secure. This issue is not serious in a single-user scheme, since the
Σ-protocol is made non-interactive in the random oracle model anyway and there is no
reason why the signer would reveal aborted executions.

In an interactive setting, the standard approach to circumvent the issue is to send a
commitment to the first Σ-protocol message and only reveal it if the rejection sampling
is successful. However, the previous FSwA multi-signatures skipped this subtle step.
Thus the concurrent work by Fukumitsu and Hasegawa [FH20] (who constructed a FSwA-
style multi-signature proven secure in QROM) had to rely on an additional non-standard
assumption (which they call “rejected” LWE), while publicly available security proofs
of other similar constructions [ES16, FH19, TLT19, MJ19, TE19] do not explain how to
simulate the aborted executions. Despite the lack of such discussion in the proofs there are
no known concrete attacks against the existing schemes, and it may be that one could patch
the problem by making additional non-standard assumptions, or by carefully choosing
the parameter such that the additional assumptions hold unconditionally. Still, it is
paramount to strive to find protocols which can be proven secure relying on well-established
computational hardness assumptions like LWE and SIS.

4.1.1 Contributions

FSwA-based distributed signatures with full security proof. In this paper we
construct FSwA-type n-out-of-n distributed and multi-signature protocols solely relying
on the hardness of learning with errors (LWE) and short integer solution (SIS) problems.
Our constructions can be seen as distributed variants of the fast Dilithium-G signature
scheme [DLL+18]. As a first step, we circumvent the aborts issue mentioned above by
utilizing Baum et al.’s additively homomorphic commitment scheme [BDL+18], which is
currently the most efficient construction based on lattices and relies on the hardness of
Module-LWE and Module-SIS problems. This results in a provably secure (in the classical
random oracle model), three-round n-out-of-n signature protocol DS3 [DOTT20]1.

1It is still an open question whether the aborts issue can instead be resolved by careful parameter
choice, allowing to simulate the rejected transcripts without any additional assumptions. But we are aware
of on-going work in this direction. If the question is answered in the affirmative our three-round protocol

70 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

First two-round protocols. Previous FSwA-based multi-signatures required at least
three rounds of interaction. On the other hand, as most recent discrete log-based solutions
indicate [DEF+19, KG20, NRSW20, NRS21, AB21], two rounds is a natural goal because
this clearly seems to be minimal for a distributed signature protocol based on the Fiat-
Shamir paradigm: we first need to determine what should be hashed in order to get the
challenge in the underlying Σ-protocol. This must (for security) include randomness from
several players and hence requires at least one round of interaction. After this we need
to determine the prover’s answer in the Σ-protocol. This cannot be computed until the
challenge is known and must (for security) require contributions from several players, and
we therefore need at least one more round.

In this paper, we show that the application of homomorphic commitment not only
resolves the issue with aborts, but also makes it possible to reduce the round complexity
to two rounds. We do this by adding a trapdoor feature to the commitment scheme (a
separate contribution that we discuss in more detail below). This results in a two-round,
n-out-of-n signature protocol DS2 presented in Section 4.3. With a slight modification
this n-out-of-n protocol can be also turned into a two-round multi-signature scheme in the
plain public key model. We describe a multi-signature variant MS2 in Section 4.4.

Our main two-round result highlights several important similarities and differences
which emerge when translating a discrete log-based protocol to lattice-based one. The
approaches taken in our two-round protocols are highly inspired by mBCJ discrete log-based
multi-signature by Drijvers et al. [DEF+19] In particular, we observe that it is crucial for
two-round protocols to use message-dependent commitment keys (as in mBCJ) instead
of a single fixed key for all signing attempts (as in the original BCJ [BCJ08]), because
otherwise the proof doesn’t go through. Drijvers et al. only presented a full security proof
for the protocol in the key verification model, in which each co-signer has to submit a
zero-knowledge proof of knowledge of the secret key. Our protocols confirm that a similar
approach securely transfers to the lattice setting even under different security models:
distributed n-out-of-n signature with dedicated key generation phase, and multi-signature
in the plain public key model.

Lattice-based trapdoor commitment. We turn Baum et al.’s scheme into a trapdoor
commitment in Section 4.5, so that the two-round protocols DS2 and MS2 are indeed
instantiable with only lattice-based assumptions. We make use of the lattice trapdoor
by Micciancio and Peikert [MP12] to generate a trapdoor commitment key in the ring
setting. The only modification required is that the committer now samples randomness
from the discrete Gaussian distribution instead of the uniform distribution. This way, the
committer holding a trapdoor of the commitment key can equivocate a commitment to an
arbitrary message by sampling a small randomness vector from the Gaussian distribution.
Such randomness is indeed indistinguishable from the actual randomness used in the
committing algorithm. Since only a limited number of lattice-based trapdoor commitment
schemes are known [GSW13, CHKP10, DM14, GVW15, LNTW19] our technique may be
of independent interest.

could be proven secure even without a commitment. However, the use of homomorphic commitment is
crucial for constructing our new two-round protocols, which is our main contribution.

4.1. INTRODUCTION 71

4.1.2 Technical Overview

Our protocols are based on Dilithium signature scheme, which works over rings R =
Z[X]/(f(X)) and Rq = Zq[X]/(f(X)) defined with an appropriate irreducible polynomial
f(X) (see preliminaries for more formal details). Here we go over the core ideas of our
construction by considering simple 2-out-of-2 signing protocols. The protocols below can be
generalized to an n-party setting in a straightforward manner. We assume that each party
Pj for j = 1, 2 owns a secret signing key share sj ∈ R`+k which has small coefficients, and
a public random matrix Ā = [A|I] ∈ Rk×(`+k)

q . The joint public verification key is defined
as pk = (A, t), where t = Ā(s1 + s2) mod q. In the actual protocols pk also needs to be
generated in a distributed way, but here we omit the key generation phase for brevity’s
sake.

Naïve approach. We first present a naïve (insecure) way to construct a 2-party signing
protocol from FSwA. If the reader is familiar with CoSi Schnorr multi-signature [STV+16]
this construction is essentially its lattice-based, 2-out-of-2 variant. In this protocol the
parties Pj for j = 1, 2 involved in signing the message µ work as follows.

1. Pj samples a randomness yj from some distribution D`+k defined over R`+k (which
is typically the uniform distribution over a small range or discrete Gaussian), and
then sends out the first message of FSwA wj = Āyj mod q.

2. Pj locally derives a joint challenge c = H(w1 + w2, µ, pk) and performs the rejection
sampling RejSamp(csj , zj) with zj = csj + yj ; if the result of RejSamp(csj , zj) is
“reject” then Pj sets zj := ⊥. After exchanging zj ’s if z1 = ⊥ or z2 = ⊥ (i.e., either
of the parties aborts), then the protocol restarts from the step 1.

3. Each party outputs (w, z) := (w1 + w2, z1 + z2) as a signature on µ.
Note that the rejection sampling step is needed to make the distribution of zj independent
of a secret sj . The verification algorithm checks that the norm of z is small, and that
Āz− ct = w (mod q) holds, where the challenge is recomputed as c← H(w, µ, pk). One
can easily check that the signature generated as above satisfies correctness, thanks to the
linearity of the SIS function fĀ(x) = Āx mod q. However, we observe that an attempt to
give a security proof fails due to two problems. Suppose the first party P̃1 is corrupt and
let us try to simulate the values returned by honest P2, whenever queried by the adversary.

First, since the protocol reveals w2 whether P2 aborts or not, the joint distribution of
rejected transcript (w2, c,⊥) has to be simulated. As mentioned earlier, there is no known
way to simulate it; in fact, the honest verifier zero knowledge (HVZK) of FSwA is only proven
for “non-aborting” cases in the original work by Lyubashevsky [Lyu09, Lyu12, Lyu19] and
its successors. Note that the obvious fix where players hash the initial messages and only
reveal them if there is no abort will not work here: the protocols need to add the initial
messages together before obtaining the challenge c in order to reduce signature size, only
the sum is included in the signature. So with this approach the initial messages must be
known in the clear before the challenge can be generated.

The second problem is more generic and could also occur in the standard Fiat–Shamir-
style two party signing: if P2 sends out w2 first, then the simulator does not know w1. In
FS-style constructions, the usual strategy for signing oracle query simulation is to first
sample a challenge c by itself, generate a simulated transcript (w2, c, z2) by invoking a
special HVZK simulator on c, and then program the random oracle H such that its output
is fixed to a predefined challenge c. In the two-party setting, however, derivation of the

72 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

DS3 executed by P2(s2, pk = (A, t), ck, µ)

y2
$← D`+k; w2 ← Āy2 mod q

com2 ← Commitck(w2; r2)

h2 ← H(com2) h2

h1

com2

Check H(com1) = h1
com1

c← H(com1 + com2, µ, pk)
z2 ← cs2 + y2

If RejSamp(cs2, z2) = 0:
(z2, r2)← (⊥,⊥)

z2, r2

If z1 = ⊥ ∨ z2 = ⊥ : restart z1, r1

Output (com1 + com2, z1 + z2,

r1 + r2) as a signature

DS2 executed by P2(s2, pk = (A, t), µ)

y2
$← D`+k; w2 ← Āy2 mod q

ck← H(µ, pk)

com2 ← Commitck(w2; r2) com2

com1

c← H(com1 + com2, µ, pk)
z2 ← cs2 + y2

If RejSamp(cs2, z2) = 0:
(z2, r2)← (⊥,⊥)

z2, r2

If z1 = ⊥ ∨ z2 = ⊥ : restart z1, r1

Output (com1 + com2, z1 + z2,

r1 + r2) as a signature

Figure 4.1: Comparison of different instantiations of FSwA-based 2-party signing protocols

joint challenge c = H(w1 + w2, µ, pk) requires contribution from P̃1 and thus there is no
way for the simulator to program H in advance. Not only the proof doesn’t go through, but
also this naïve construction is amenable to a concrete attack, which allows malicious P̃1 to
create a valid forgery by adaptively choosing w1 after seeing w2. In [DOTT20] we describe
this attack relying on a variant of Wagner’s generalized birthday problem [Wag02, HJ10].
Homomorphic commitment to simulate aborts. We now present a provably secure,
intermediate protocol that circumvents the above issues. See DS3 in Fig. 4.1. To address
the first issue with aborts, each player Pj now commits to an initial Σ-protocol message wj

using an additively homomorphic commitment comj . Thanks to the hiding property, each
party leaks no useful information about wj until the rejection sampling is successful, and
thus it is now possible to simulate a rejected transcript (comj , c,⊥). Then Pj broadcasts
a hash based commitment to comj , to deal with the second issue. Once all parties have
done this, comj ’s are revealed in the next round and checked against the hashes. Once the
comj ’s are known, they can be added together in a meaningful way by the homomorphic
property, and we then hash the sum and the message to get the challenge. The verification
now receives a signature consisting of three elements (com, z, r) and simply checks that
w = Āz − ct (mod q) and r form a correct opening to com, where the challenge is
recomputed as c← H(com, µ, pk).

We note that the extra round for hash commitment is a standard technique, previously
used in multiple three-round protocols, such as Nicolosi et al. [NKDM03] and Bellare

4.1. INTRODUCTION 73

and Neven [BN06] in the discrete log setting, and Bansarkhani and Sturm [ES16] in their
FSwA-based instantiation. This way, the simulator for honest P2 can successfully extract
corrupt P̃1’s share com1 by keeping track of incoming queries to H (when modeled as a
random oracle), and program H such that H(com1 + com2, µ, pk) := c before revealing
com2. In [DOTT20] we provide a formal security proof for DS3 by showing a reduction to
Module-LWE without relying on the forking lemma [PS00a, BN06].2 This is made possible
by instantiating the construction with unconditionally binding commitment, which allows
us to avoid rewinding the adversary and apply the lossy identification technique by Abdalla
et al. [AFLT16].

One efficiency issue is, that the protocol has to be restarted until all parties pass
the rejection sampling step simultaneously. All previous FSwA-based multi-signatures
also had the same issues, but we can mitigate by running sufficiently many parallel
executions of the protocol at once, or by carefully choosing the parameters for rejection
sampling. To further reduce the number of aborts, we chose to instantiate the protocol with
Dilithium-“G” [DLL+18] instead of the one submitted to NIST competition [LDK+19].
Trapdoor commitment to avoid the extra round. Although DS3 is secure, the first
round of interaction may seem redundant, since the parties are essentially “committing to a
commitment”. We show that the extra hash commitment round can be indeed dropped by
adding a trapdoor feature to the commitment scheme, which allows the so-called straight-
line simulation technique due to Damgård [Dam00]. We present our main two-round
protocol DS2 in Fig. 4.1. This way, the simulation of honest P2 does not require the
knowledge of corrupt P̃1’s commitment share; instead, the simulator can now simply send a
commitment com2 (to some random value) and then later equivocate to an arbitrary value
using the known trapdoor td associated with a trapdoored commitment key tck. Concretely,
the simulator need not program the random oracle this time, and instead derives a challenge
c← H(com1 + com2, µ, pk) as the real honest party would do. Now the simulator invokes a
(special) HVZK simulator with c as input, to obtain a transcript (w2, c, z2). With some
constant probability it equivocates com2 to w2, or otherwise sends out ⊥ to simulate
aborts. We also stress that the per-message commitment key ck← H(µ, pk) is crucial in
the two-round protocol; if a single ck is used across all signing attempts, then a concurrent
attack similar to the one against the naïve construction becomes applicable (see [DOTT20]).
Unlike the three-round protocol, we present a security proof relying on the forking lemma
and we reduce the security to both Module-SIS and Module-LWE assumptions; since a
trapdoor commitment can at most be computationally binding, we must extract from the
adversary two different openings to the same commitment in order to be able to reduce
security to the binding property. We leave for future work a tighter security proof, as well
as a proof in the quantum random oracle model.
Two-round multi-signature. We can now convert to a two-round multi-signature scheme
in the plain public key model: following Bellare–Neven [BN06] the protocol now generates
per-user challenges cj = H(tj ,

∑
j comj , µ, L) for each user’s public key tj ∈ L, instead of

interactively generating the fixed joint public key t in advance. The verification algorithm
is adjusted accordingly: given (com, z, r) and a list of public keys L, the verifier checks that
Āz −

∑
j cjtj (mod q) and r form a correct opening to com, where cj ’s are recomputed

as in the signing protocol. Section 4.4 formally describes our MS2 protocol with security
proof.

2We include this for completeness since, while the three-round protocol itself is not novel, to the best of
our knowledge there has been no publicly available complete security proof solely relying on Module-LWE.

74 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Functionality # Rounds Type Assumption Building blocks
[BGG+18] t-out-of-n 1 FSwA Lyubashevsky’12 Threshold FHE
[BKP13] t-out-of-n 1 H&S GPV’08 Honest-majority MPC
Our DS3 n-out-of-n 3 FSwA MLWE Homomorphic COM
Our DS2 n-out-of-n 2 FSwA MLWE & MSIS Homomorphic TDCOM
[FH20] Multisig 3 FSwA MLWE & rMLWE / QROM —
Our MS2 Multisig 2 FSwA MLWE & MSIS Homomorphic TDCOM

Table 4.1: Comparison with previous lattice-based multi-party signing protocols with (pub-
licly available) full security proofs. “FSwA” denotes Fiat–Shamir with aborts signatures of
[Lyu09, Lyu12] and “H&S” denotes hash-and-sign-type signature of [GPV08], respectively.

4.1.3 Related Work

The FSwA paradigm was first proposed by Lyubashevsky [Lyu09, Lyu12] and many efficient
signature schemes following this framework have been devised, such as GLP [GLP12],
BLISS [DDLL13], Dilithium [LDK+19] and qTESLA [BAA+19]. Bansarkhani and Sturm
[ES16] extended GLP signature and proposed the first multi-signature following the FSwA
paradigm. Since then several variants appeared in the literature: four-round protocol
with public key aggregation [MJ19], three-round protocol with tight security proof [FH19]
and proof in QROM [FH20], ID-based blind multi-signature [TLT19] and ID-based proxy
multi-signature [TE19]. However, as mentioned earlier the security proofs for all these
multi-signatures are either incomplete or rely on a non-standard heuristic assumption. Choi
and Kim [CK16] proposed a linearly homomorphic multi-signature from lattices trapdoors.
Kansal and Dutta [KD20] constructed a single-round multi-signature scheme relying on the
hardness of SIS, which was soon after broken by Liu et al. [LTT20]. Several lattice-based
threshold ring signatures exist in the literature, such as Cayrel et al. [CLRS10], Bettaieb
and Schrek [BS13], and Torres et al. [TSSK20]. Döroz et al. [DHSS20] and Boudgoust and
Adeline Roux-Langlois [BR21] devised lattice-based aggregate signature schemes relying on
rejection sampling. Very recently, Esgin et al. [EEE20] developed FSwA-based adaptor
signatures with application to blockchains.

Our two-round protocols rely on trapdoor commitment to enable the straight-line
simulation of ZK. The trick is originated in a concurrent ZK proof by Damgård [Dam00]
and similar ideas have been extensively used in the ZK literature [BKLP15, CPS+16a,
COSV17b, COSV17a], to turn honest verifier ZK proof into full-fledged ZK. Moreover,
recent efficient lattice-based ZK proofs [dLS18, ESS+19, YAZ+19, BLS19, ESLL19] also
make use of Baum et al.’s additively homomorphic commitment. The issue of revealing
the first “commit” message in the FSwA framework has been also discussed by Barthe
et al. [BBE+18] in the context of masking countermeasure against side-channel attacks,
and they used Baum et al.’s commitment to circumvent the issue. The homomorphic
lattice-based trapdoor commitment could also be instantiated with GSW-FHE [GSW13],
homomorphic trapdoor functions [GVW15], Chameleon hash [CHKP10, DM14] or mercurial
commitment [LNTW19].
Comparison with Fukumitsu and Hasegawa [FH20] A concurrent work due to
Fukumitsu and Hasegawa proposed a multi-signature scheme based on Dilithium. Our
MS2 and DS3 have different pros and cons compared with their construction. First,
although both MS2 and [FH20] are proven secure in the plain public-key model, our scheme
requires only two rounds of interaction while theirs is a three-round protocol that closely

4.1. INTRODUCTION 75

follows the existing paradigm of [BN06]. Due to the “abort” issue we raised earlier, their
security proof required an additional hardness assumption rejected Module-LWE (rMLWE).
However, our proof for MS2 relies on the forking lemma incurring a quadratic security
loss, while [FH20] circumvents that to give a proof in the QROM. In fact, both DS3 and
[FH20] essentially benefit from the same lossy identification techniques of [AFLT16, KLS18]
to avoid rewinding and to obtain tighter security proofs. It is therefore an interesting
follow-up work to prove security of DS3 or [FH20] patched with the committed first-round
messages in the QROM assuming only Module-LWE. Another advantage of [FH20] is that
their construction considers signature size compression techniques present in the original
Dilithium signature scheme and it is thus closer to the scheme submitted to the NIST
PQC competition.
Comparison with Bendlin et al. [BKP13] An entirely different approach to con-
structing threshold signatures based on lattices relies not on the Fiat–Shamir with aborts
paradigm, but on GPV hash-and-sign signatures [GPV08]. This approach was introduced
by Bendlin et al. in [BKP13], who described how to implement Peikert’s hash-and-sign
signatures [Pei10] in a multiparty setting. Compared to the approach in this paper, it has
the advantage of realizing the same distributed signature scheme (e.g., with the same size
bound for verification) independently of the number of parties, and in particular, signature
size does not grow with the number of parties. Moreover, it supports more general access
structure than the full threshold considered in this paper (although their protocol does
not withstand dishonest majority for the sake of information-theoretic security, while our
protocol does tolerate up to n− 1 corrupt parties). Its main downside, however, is that
the most expensive part of Peikert’s signing algorithm, namely the offline lattice Gaussian
sampling phase, is carried out using generic multiparty computation (this is the first step
of the protocol πPerturb described in [BKP13, Fig. 23]). This makes it difficult to estimate
the concrete efficiency of Bendlin et al.’s protocol, but since the Peikert signature scheme
is fairly costly even in a single-user setting, the protocol is unlikely to be practical.

In contrast, while our protocols do use discrete Gaussian sampling, it is only carried
out locally by each party, and it is Gaussian sampling over Z rather than a lattice, which
is considerably less costly. Furthermore, while we also use lattice trapdoors as a proof
technique in the trapdoor commitment scheme of our two-round protocol, trapdoor Gaussian
sampling is never carried out in the actual protocol, only in the simulation (the actual
protocol has no trapdoor). Thus, our protocols entirely avoid the expensive machinery
present in Bendlin et al.’s scheme, and have a fully concrete instantiation (at the cost of
signatures increasing in size with the number of parties).
Comparison with Boneh et al. [BGG+18] A previous work of Boneh et al. [BGG+18]
proposed a general solution to non-interactive, t-out-of-n threshold signatures based on
the universal thresholdizer enabled by FHE. Their approach roughly works as follows:
each party is supplied with a common FHE-encrypted signing key sk and one share of the
Shamir-secret-shared FHE decryption key. Upon receiving the message µ to be signed,
they evaluate a circuit computing Sign(sk, µ) on the public ciphertext as input, and output
a partial decryption of the FHE-encrypted signature. These partial evaluations of the Sign
function can then be combined into a valid signature using the reconstruction algorithm
of the Shamir secret sharing. Similar to [BKP13], the approach of [BGG+18] has the
advantage of making the signature size as well as the verification bound independent of
the number of participants. As the authors remark in §7, however, their construction
comes with a few caveats. Since each party must homomorphically compute a challenge

76 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

hash function and rejection sampling if instantiated with a FSwA-based Sign function, the
actual running time of sign operations may be slow in practice. Moreover, the universal
thresholdizer assumes a trusted setup, where a trusted authority provides each user in the
system with a share of the FHE decryption key. In contrast, our protocol describes a
simple, concrete multi-party key generation phase and evaluations of hash functions and
rejection sampling are carried out in the clear by each party.

4.2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer interval
notation [a, b] to denote {a, a+ 1, . . . , b}; we use [b] as shorthand for [1, b]. If S is a set we
write s $← S to indicate sampling s from the uniform distribution defined over S; if D is a
probability distribution we write s $← D to indicate sampling s from the distribution D;
if we are explicit about the set S over which the distribution D is defined then we write
D(S); if A is an algorithm we write s← A to indicate assigning an output from A to s.

4.2.1 Polynomial Rings and Discrete Gaussian Distribution

In this paper most operations work over rings R = Z[X]/(f(X)) and Rq = Zq[X]/(f(X)),
where q is a modulus, N is a power of two defining the degree of f(X), and f(X) = XN + 1
is the 2N -th cyclotomic polynomial. Following [DLL+18], we consider centered modular
reduction mod ±q: for any v ∈ Zq, v′ = v mod ±q is defined to be a unique integer
in the range [−bq/2c, bq/2c] such that v′ = v mod q. We define the norm of v ∈ Zq
such that ‖v‖ := |v mod ±q|. Now we define the Lp-norm for a (vector of) ring element
v = (∑N−1

i=0 vi,1X
i, . . . ,

∑N−1
i=0 vi,mX

i)T ∈ Rm as follows:

‖v‖p :=
∥∥∥(v0,1, . . . , vN−1,1, . . . , v0,m, . . . , vN−1,m)T

∥∥∥
p
.

We rely on the following key set Sη ⊆ R parameterized by η ≥ 0 consisting of small
polynomials:

Sη = {x ∈ R : ‖x‖∞ ≤ η} .

Moreover the challenge set C ⊆ R parameterized by κ ≥ 0 consists of small and sparse
polynomials, which will be used as the image of random oracle H0:

C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ} . (4.1)

The discrete Gaussian distribution over Rm is defined as follows.

Definition 4.1 (Discrete Gaussian Distribution over Rm). For x ∈ Rm, let ρv,s(x) =
exp (−π ‖x− v‖22 /s2) be a Gaussian function of parameters v ∈ Rm and s ∈ R. The
discrete Gaussian distribution Dm

v,s centered at v is

Dm
v,s(x) := ρv,s(x)/ρv,s(Rm)

where ρv,s(Rm) = ∑
x∈Rm ρv,s(x).

In what follows we omit the subscript v if v = 0 and write Dm
s as a shorthand.

When s exceeds the so-called smoothing parameter η(Rm) ≤ ω(
√

log(mN)) of the ambient

4.2. PRELIMINARIES 77

space, then the discrete Gaussians DRm−v,s = Dm
v,s − v supported on all cosets of Rm

are statistically close, and hence Dm
s behaves qualitatively like a continuous Gaussian of

standard deviation σ = s/
√

2π. The condition on s will be satisfied for all the discrete
Gaussians in this paper, and hence σ will be called the standard deviation (even though it
technically holds only up to negligible error). For the same reason, we will always be in a
setting where the following fact [MP13, Theorem 3.3][ESLL19, Lemma 9] holds.

Lemma 4.1 (Sum of Discrete Gaussian Samples). Suppose s exceeds the smoothing
parameter by a factor ≥

√
2. Let xi for i ∈ [n] be independent samples from the distribution

Dm
s . Then the distribution of x = ∑

i xi is statistically close to Dm
s
√
n
.

4.2.2 Lattice Problems

Below we define two standard lattice problems over rings: module short integer solution
(MSIS) and learning with errors (MLWE). We also call them MSIS/MLWE assumption
if for any probabilistic polynomial-time adversaries the probability that they can solve a
given problem is negligible. Note that the latter k elements of s correspond to the error
term of MLWE.

Definition 4.2 (MSISq,k,`,β problem). Given a random matrix A $← Rk×`q find a vector
x ∈ R`+kq such that [A|I] · x = 0 and 0 < ‖x‖2 ≤ β.

Definition 4.3 (MLWEq,k,`,η problem). Given a pair (A, t) ∈ Rk×`q ×Rkq decide whether
it was generated uniformly at random from Rk×`q ×Rkq , or it was generated in a way that
A $← Rk×`q , s $← S`η × Skη and t := [A|I] · s.

4.2.3 Fiat–Shamir with Aborts Framework and Dilithium-G

Algorithm 6 Key generation
Require: pp = (Rq, k, `, η, B, s,M)
Output: (sk, pk)
1: A $← Rk×`q

2: Ā := [A|I] ∈ Rk×(`+k)
q

3: (s1, s2) $← S`η × Skη ; s :=
[
s1
s2

]
4: t := Ās
5: sk := s
6: pk := (Ā, t)
7: return (sk, pk)

Algorithm 7 Signature verification
Require: pk, (z, c), µ, pp
1: If ‖z‖2 ≤ B and c = H0(Āz− ct, µ, pk):
2: return 1
3: Otherwise: return 0

Algorithm 8 Signature generation
Require: sk, pk, µ, pp = (Rq, k, `, η, B, s,M)
Output: valid signature pair (z, c)

1: (y1,y2) $← D`
s ×Dk

s ; y :=
[
y1
y2

]
2: w := Āy
3: c← H0(w, µ, pk)
4: z := cs + y
5: With prob. min

(
1, D`+k

s (z)/(M ·D`+k
cs,s (z))

)
:

6: return (z, c)
7: Restart otherwise

78 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Algorithm 9 Trans(sk, c)

1: y $← D`+k
s

2: w := Āy
3: z := cs + y
4: With prob. min

(
1, D`+k

s (z)/(M ·D`+k
cs,s (z))

)
:

5: return (w, c, z)
6: Otherwise:
7: return (⊥, c,⊥)

Algorithm 10 SimTrans(pk, c)

1: z $← D`+k
s

2: w := Āz− ct
3: With prob. 1/M :
4: return (w, c, z)
5: Otherwise:
6: return (⊥, c,⊥)

We present a non-optimized version of Dilithium-G signature scheme in Algorithms 6
to 8, on which we base our distributed signing protocols. The random oracle is defined as
H0 : {0, 1}∗ → C. Due to [Lyu12, Lemma 4.4] we restate below, the maximum L2-norm of
the signature z ∈ R`+k is set to B = γσ

√
(`+ k)N , where the parameter γ > 1 is chosen

such that the probability γ(`+k)Ne(`+k)N(1−γ2)/2 is negligible.

Lemma 4.2. For any γ > 1, Pr[‖z‖2 > γσ
√
mN : z $← Dm

s] < γmNemN(1−γ2)/2.

The following claim by Lyubashevsky (adapted from [Lyu12, Lemma 4.5]) is crucial for
the signing oracle of FSwA to be simulatable, and also to decide the standard deviation σ
as well as the expected number of repetitions M . For instance, setting α = 11 and t = 12
leads to M ≈ 3. Although M is asymptotically superconstant, t increases very slowly in
practice, and hence M behaves essentially like a constant for practical security parameters
(in the literature, it is often taken as 12 to ensure ε < 2−100, thereby ensuring > 100 bits
of security).

Lemma 4.3. For V ⊆ Rm let T = maxv∈V ‖v‖2. Fix some t such that t = ω(
√

log(mN))
and t = o(log(mN)). If σ = αT for any positive α, then

Pr[M ≥ Dm
s (z)/Dm

v,s(z) : z $← Dm
s (z)] ≥ 1− ε

where M = et/α+1/(2α2) and ε = 2e−t2/2.

We now present a supporting lemma which is required for Dilithium-G to be UF-CMA
secure. This is almost a direct consequence of Lemma 4.3 and a similar result appears in
[KLS18, Lemma 4.3] to prove the security of Dilithium signature instantiated with the
uniform distribution. We remark that the simulator in Algorithm 10 can only simulate
transcripts of non-abort executions in the underlying interactive Σ-protocol; in fact, if
Trans output w in case of rejection as it’s done in the interactive protocol then there is no
known method to simulate the joint distribution of (w, c,⊥) [BCK+14, Lyu19] (without
assuming some ad-hoc assumptions like rejection-DCK [BBE+18] or rejected-LWE [FH20]).

Lemma 4.4 (Non-abort Special Honest Verifier Zero Knowledge). Let m = ` + k and
T = maxc∈C,s∈Smη ‖c · s‖2. Fix some t such that t = ω(

√
log(mN)) and t = o(log(mN)). If

σ = αT for any positive α, then for any c ∈ C (as defined in (4.1)) and s ∈ Smη , the output
distribution of Trans(sk, c) (Algorithm 9) is within statistical distance ε/M of the output
distribution of SimTrans(pk, c) (Algorithm 10), where M = et/α+1/(2α2) and ε = 2e−t2/2.
Moreover, 1/M ≥ Pr[Trans(s, c) 6= (⊥, c,⊥)] ≥ (1− ε)/M .

4.2. PRELIMINARIES 79

Proof. The proof closely follows the rejection sampling lemma due to Lyubashevsky [Lyu12,
Lemma 4.7], but since we are interested in showing special HVZK, we account for fixed
challenge c ∈ C given to the simulator as input. For each c ∈ C and s ∈ Smη , we define
v = c·s and Sv =

{
z ∈ Rm : M ≥ Dm

s (z)/Dm
v,s(z)

}
. We first consider simplified algorithms

Trans′(s, c) and SimTrans′(c), which do not take the public key as input and only output
(c, z) or (c,⊥). Then we have

Pr[Trans′(s, c) 6= (c,⊥)] =
∑

z∈Rm
Dm

v,s(z) ·min
(

1, Dm
s (z)

M ·Dm
v,s(z)

)

=
∑

z∈Sv

Dm
s (z)
M

+
∑

z/∈Sv

Dm
v,s(z)

≥
∑

z∈Sv

Dm
s (z)
M

≥ 1− ε
M

where the last inequality holds from Lemma 4.3. Clearly, the upper bound is

Pr[Trans′(s, c) 6= (c,⊥)] ≤
∑

z∈Rm

Dm
s (z)
M

≤ 1
M
.

As w is not involved in the rejection sampling we also have that 1/M ≥ Pr[Trans(s, c) 6=
(⊥, c,⊥)] ≥ (1− ε)/M . Now we find the statistical distance:

∆(Trans′(s, c),SimTrans′(c)) =1
2

(∑
z∈Rm

∣∣Pr[Trans′(s, c) = (c, z)]− Pr[SimTrans′(c) = (c, z)]
∣∣

+
∣∣Pr[Trans′(s, c) = (c,⊥)]− Pr[SimTrans′(c) = (c,⊥)]

∣∣)

≤1
2

(∑
z∈Rm

∣∣Pr[Trans′(s, c) = (c, z)]− Pr[SimTrans′(c) = (c, z)]
∣∣

+
∣∣∣∣(1− 1− ε

M

)
−
(

1− 1
M

)∣∣∣∣
)

=1
2

(∑
z∈Rm

∣∣∣∣∣Dm
v,s(z) ·min

(
1, Dm

s (z)
M ·Dm

v,s(z)

)
− Dm

s (z)
M

∣∣∣∣∣+ ε

M

)

=1
2

(∑
z∈Sv

∣∣∣∣Dm
s (z)
M

− Dm
s (z)
M

∣∣∣∣+ ∑
z/∈Sv

∣∣∣∣Dm
v,s(z)− Dm

s (z)
M

∣∣∣∣+ ε

M

)

≤1
2

(∑
z/∈Sv

Dm
s (z)
M

+ ε

M

)
≤ 1

2

(
ε

M
+ ε

M

)
= ε

M

where the last inequality holds from Lemma 4.3. Finally, outputting w in non-abort cases
doesn’t increase the statistical distance: since the underlying identification protocol is
commitment recoverable [KLS18], w can be reconstructed given c, z and pk. This concludes
the proof.

80 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

4.2.4 Trapdoor Homomorphic Commitment Scheme

Below we formally define a trapdoor commitment scheme with the standard security notions.
The two additional properties are required by our protocols: additive homomorphism and
uniform key. The lattice-based commitments described in Section 4.5 indeed satisfy
all of them. The uniform property is required since our protocols rely on commitment
key derivation via random oracles mapping to a key space Sck, and thus its output
distribution should look like the one from CGen. Many other standard schemes like
Pedersen commitment [Ped92] trivially satisfy this property. The additive homomorphism
is also needed to preserve the algebraic structure of the first “commit” message of FSwA.
Finally, the trapdoor feature is crucial for achieving two-round protocols.

Definition 4.4 ((Trapdoor) Commitment Scheme). A trapdoor commitment scheme
TCOM consists of the following algorithms.

• CSetup(1κ)→ cpp: The setup algorithm outputs a public parameter cpp defining sets
Sck, Sm, Sr, Scom, and Std and the distribution D(Sr) from which the randomness is
sampled.

• CGen(cpp)→ ck: The key generation algorithm that samples a commitment key from
Sck.

• Commitck(m; r)→ com: The committing algorithm that takes a message m ∈ Sm and
randomness r ∈ Sr as input and outputs com ∈ Scom. We simply write Commitck(m)
when it uses r sampled from D(Sr).

• Openck(com, r,m) → b: The opening algorithm outputs b = 1 if the input tuple is
valid, and b = 0 otherwise.

• TCGen(cpp)→ (tck, td): The trapdoor key generation algorithm that outputs tck ∈ Sck
and the trapdoor td ∈ Std.

• TCommittck(td)→ com: The trapdoor committing algorithm that outputs a commit-
ment com ∈ Scom.

• Eqvtck(td, com,m)→ r: The equivocation algorithm that outputs randomness r ∈ Sr.
A usual commitment scheme COM is a special case of TCOM: it only consists of CSetup,

CGen, Commit, and Open.
Correctness. TCOM (resp. COM) is correct if for any m ∈ Sm

Pr
[

Openck(com, r,m)→ 1 :
cpp← CSetup(1κ); ck← CGen(cpp)
r

$← D(Sr); com← Commitck(m; r)

]
= 1.

Hiding TCOM (resp. COM) is unconditionally (resp. computationally) hiding if the
following probability is negligible in κ for any probabilistic adversary (resp. probabilistic
polynomial-time adversary) A = (A1,A2).

εhide :=

∣∣∣∣∣∣∣∣∣Pr

 b = b′ :

cpp← CSetup(1κ); ck← CGen(cpp)
(m0,m1)← A1(ck, cpp)
b

$← {0, 1}; com← Commitck(mb)
b′ ← A2(com)

− 1
2

∣∣∣∣∣∣∣∣∣
Binding TCOM (resp. COM) is unconditionally (resp. computationally) binding if the
following probability is negligible in κ for any probabilistic adversary (resp. probabilistic

4.2. PRELIMINARIES 81

polynomial-time adversary) A.

εbind := Pr

 m 6= m′

∧Openck(com, r,m)→ 1
∧Openck(com, r′,m′)→ 1

:
cpp← CSetup(1κ)
ck← CGen(cpp)
(com,m, r,m′, r′)← A(ck)

In particular, unconditionally binding implies that the following probability is also negligible
in κ, since otherwise unbounded adversaries can simply check all possible values in Scom,
Sm and Sr to find a tuple that breaks binding.

εubind := Pr

∃(com, r,m, r′,m′) :
m 6= m′

∧Openck(com, r,m)→ 1
∧Openck(com, r′,m′)→ 1

: cpp← CSetup(1κ)
ck← CGen(cpp)

Secure Trapdoor TCOM has a secure trapdoor if for any m ∈ Sm, the statistical distance
εtd between (ck,m, com, r) and (tck,m, com′, r′) is negligible in κ, where

• cpp← CSetup(1κ); ck← CGen(cpp); r $← D(Sr); com← Commitck(m; r), and
• (tck, td)← TCGen(cpp); com′ ← TCommittck(td); r′ ← Eqvtck(td, com′,m).

Definition 4.5 (Uniform Key). A commitment key is said to be uniform if the output of
CGen(cpp) follows the uniform distribution over the key space Sck.

Definition 4.6 (Additive Homomorphism). A commitment scheme is said to be additively
homomorphic if for any m,m′ ∈ Sm

Pr

Openck(com + com′, r + r′,m+m′)→ 1 :

cpp← CSetup(1κ)
ck← CGen(cpp)
r

$← D(Sr); r′ $← D(Sr)
com← Commitck(m; r)
com′ ← Commitck(m′; r′)

 = 1.

4.2.5 Security Notions for n-out-of-n Signature and Multi-Signature

We first define the n-out-of-n distributed signature protocol and its security notion. The
game-based security notion below is based on the one presented by Lindell [Lin17a] for
two-party signing protocol. Our definition can be regarded as its generalization to n-party
setting. Following Lindell, we assume that the key generation can be invoked only once,
while many signing sessions can be executed concurrently. The main difference is that,
in our protocols all players have the same role, and therefore we fix wlog the index of
honest party and challenger to n, who has to send out the message first in each round
of interaction. This way, we assume that the adversary A who corrupts P1, . . . , Pn−1 is
rushing by default (i.e., A is allowed to choose their own messages based on Pn’s message).

Definition 4.7 (Distributed Signature Protocol). A distributed signature protocol DS
consists of the following algorithms.

• Setup(1κ)→ pp: The set up algorithm that outputs public parameters pp on a security
parameter κ as input.

82 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

ExpDS-UF-CMA
DS (A)

1 : Mset ← ∅
2 : pp← Setup(1κ)

3 : (µ∗, σ∗)← AO
DS
n (·,·)(pp)

4 : b← Ver(µ∗, σ∗, pk)
5 : return (b = 1) ∧ µ∗ /∈ Mset

ExpMS-UF-CMA
MS (A)

1 : Mset ← ∅
2 : pp← Setup(1κ)
3 : (sk, pk)← Gen(pp)

4 : (µ∗, σ∗, L∗)← AO
MS(·,·)(pk, pp)

5 : b← Ver(µ∗, σ∗, L∗)
6 : return (b = 1) ∧ pk ∈ L∗ ∧ (µ∗, L∗) /∈ Mset

Figure 4.2: DS-UF-CMA and MS-UF-CMA experiments. The oracles ODS
n and

OMS are described in Figs. 4.3 and 4.4. In the left (resp. right) experiment, Mset
is the set of all inputs µ (resp. (µ,L)) such that (sid, µ) (resp. (sid, (µ,L))) was
queried by A to its oracle as the first query with identifier sid 6= 0 (resp. with any
identifier sid). Note that pk in the left experiment is the public verification key
output by Pn when it completes Genn(pp).

• Genj(pp)→ (skj , pk) for every j ∈ [n]: The interactive key generation algorithm that
is run by party Pj. Each Pj runs the protocol on public parameters pp as input. At
the end of the protocol Pj obtains a secret key share skj and public key pk.

• Signj(sid, skj , pk, µ)→ σ for every j ∈ [n]: The interactive signing algorithm that is
run by party Pj. Each Pj runs the protocol on session ID sid, its signing key share
skj, public key pk, and message to be signed µ as input. We also assume that the
algorithm can use any state information obtained during the key generation phase.
At the end of the protocol Pj obtains a signature σ as output.

• Ver(σ, µ, pk)→ b: The verification algorithm that takes a signature, message, and a
single public key pk and outputs b = 1 if the signature is valid and otherwise b = 0.

Definition 4.8 (DS-UF-CMA Security). A distributed signature protocol DS is said to be
DS-UF-CMA (distributed signature unforgeability against chosen message attacks) secure,
if for any probabilistic polynomial time adversary A, its advantage

AdvDS-UF-CMA
DS (A) := Pr

[
ExpDS-UF-CMA

DS (A)→ 1
]

is negligible in κ, where ExpDS-UF-CMA
DS (A) is described in Fig. 4.2.

Next we define the standard security notion of multi-signature protocol in the plain
public-key model. The following definitions are adapted from [BN06], but the syntax is
made consistent with n-out-of-n signing. The main difference from the distributed signature
is, that there is no interactive key generation protocol and the adversary is not required to
fix its key pair at the beginning of the game. Accordingly, the adversary can dynamically
choose a set of public keys involving the challenger’s key, and query the signing oracle
to receive signatures. On the other hand, assuming that key aggregation is not always
supported the verification algorithm takes a set of public keys, instead of a single combined
public key as in the prior case. We also note that n is now the number of maximum number
of parties involved in a single execution of signing protocol, since the size of L may vary
depending on a protocol instance.

4.2. PRELIMINARIES 83

Oracle ODS
n (sid,m)

The oracle is initialized with public parameters pp generated by Setup algorithm. The
variable flag is initially set to false.
Key Generation Upon receiving (0,m), if flag = true then return ⊥. Otherwise do

the following:
• If the oracle is queried with sid = 0 for the first time then it initializes a

machineM0 running the instructions of party Pn in the distributed key
generation protocol Genn(pp). If Pn sends the first message in the key
generation protocol, then this message is the oracle reply.

• IfM0 has been already initialized then the oracle hands the machineM0
the next incoming message m and returns M0’s reply. If M0 concludes
with local output (skn, pk), then set flag = true.

Signature Generation Upon receiving (sid,m) with sid 6= 0, if flag = false then
return ⊥. Otherwise do the following:

• If the oracle is queried with sid for the first time then parse the incoming
message m as µ. It initializes a machine Msid running the instructions
of party Pn in the distributed signing protocol Signn(sid, skn, pk, µ). The
machineMsid is initialized with the key share and any state information
stored byM0 at the end of the key generation phase. The message µ to
be signed is included in Mset. If Pn sends the first message in the signing
protocol, then this message is the oracle reply.

• IfMsid has been already initialized then the oracle hands the machineMsid
the next incoming message m and returns the next message sent byMsid.
IfMsid concludes with local output σ, then the output obtained byMsid
is returned.

Figure 4.3: Honest party oracle for the distributed signing protocol.

Definition 4.9 (Multi-signature Protocol). A multisignature protocol MS consists of the
following algorithms.

• Setup(1κ) → pp: The set up algorithm that outputs a public parameter pp on a
security parameter κ as input.

• Gen(pp)→ (sk, pk): The non-interactive key generation algorithm that outputs a key
pair on a public parameter pp as input.

• Sign(sid, sk, pk, µ, L)→ σ: The interactive signing algorithm that is run by a party P
holding a key pair (sk, pk). Each P runs the protocol on session ID sid, its signing
key sk, public key pk, message to be signed µ, and a set of co-signers’ public keys L
as input. At the end of the protocol P obtains a signature σ as output.

• Ver(σ, µ, L)→ b: The verification algorithm that takes a signature, message, and a
set of public keys and outputs b = 1 if the signature is valid and otherwise b = 0.

Definition 4.10 (MS-UF-CMA Security). A multisignature protocol MS is said to be
MS-UF-CMA (multisignature unforgeability against chosen message attacks) secure, if for

84 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Oracle OMS(sid,m)

The oracle is initialized with public parameters pp generated by Setup algorithm.
Signature Generation Upon receiving (sid,m) do the following:

• If the oracle is queried with sid for the first time then parse the incoming
message m as (µ,L). If pk /∈ L then it returns ⊥. Otherwise it initializes a
machineMsid running the instructions of party P in the multi-signature
protocol Sign(sid, sk, pk, µ, L). The machine Msid is initialized with the
key pair (sk, pk) and any state information obtained during Gen(pp). The
pair (µ,L) is included in Mset. If P sends the first message in the signing
protocol, then this message is the oracle reply.

• IfMsid has been already initialized then the oracle hands the machineMsid
the next incoming message m and returns the next message sent byMsid.
IfMsid concludes, then the output obtained byMsid is returned.

Figure 4.4: Honest party oracle for the multi-signature protocol.

any probabilistic polynomial time adversary A, its advantage

AdvMS-UF-CMA
MS (A) := Pr

[
ExpMS-UF-CMA

MS (A)→ 1
]

is negligible in κ, where ExpMS-UF-CMA
MS (A) is described in Fig. 4.2.

4.2.6 General Forking Lemma

We restate the general forking lemma from [BN06].

Lemma 4.5 (General Forking Lemma). Let Q be a number of queries and C be a set of
size |C| > 2. Let B be a randomized algorithm that on input x, h1, . . . , hQ returns an index
i ∈ [0, Q] and a side output out. Let IGen be a randomized algorithm that we call the input
generator. Let FB be a forking algorithm that works as in Fig. 4.5 given x as input and
given black-box access to B. Suppose the following probabilities.

acc := Pr[i 6= 0 : x← IGen(1κ);h1, . . . , hQ
$← C; (i, out)← B(x, h1, . . . , hQ)]

frk := Pr[b = 1 : x← IGen(1κ); (b, out, ˆout)← FB(x)]

Then
frk ≥ acc ·

(acc
Q
− 1
|C|

)
.

Alternatively,

acc ≤ Q

|C|
+
√
Q · frk.

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 85

Algorithm FB(x)

Upon receiving x
1. Pick a random coin ρ for B.

2. Generate h1, . . . , hQ
$← C.

3. (i, out)← B(x, h1, . . . , hQ; ρ).
4. If i = 0 then return (0,⊥,⊥).

5. Regenerate ĥi, . . . , ĥQ $← C.
6. (̂i, ˆout)← B(x, h1, . . . , hi−1, ĥi, . . . , ĥQ; ρ).
7. If i = î and hi 6= ĥi then return (1, out, ˆout)
8. Else return (0,⊥,⊥).

Figure 4.5: The forking algorithm FB

4.3 DS2: Two-round n-out-of-n Signing from Module-LWE
and Module-SIS

4.3.1 Protocol specification and overview

This section presents our main construction: provably secure two-round n-out-of-n protocol
DS2 = (Setup, (Genj)j∈[n], (Signj)j∈[n],Ver), formally specified in Fig. 4.7. As mentioned
in Section 4.2.5 all players have the same role and hence we only present n-th player’s
behavior. The protocol is built on top of an additively homomorphic trapdoor commitment
scheme TCOM with uniform keys (see Section 4.2.4 for the formal definitions), and we will
describe concrete instances of TCOM later in Section 4.5. We go over high-level ideas for
each step below.
Parameter setup. We assume that a trusted party invokes DS2.Setup(1κ) that outputs
a set of public parameters described in Table 4.2 as well as the parameter for commit-
ment scheme cpp (obtained by internally invoking TCOM.CSetup(1κ)). Most parameters
commonly appear in the literature about the Fiat–Shamir with aborts paradigm (e.g.
[DLL+18, Lyu12]) and we therefore omit the details here. The bit length l1 and l2 should
be sufficiently long for the random oracle commitments to be secure. The only additional
parameters are Bn and Mn, which we describe below in Section 4.3.2.
Key generation. The key generation DS2.Genn essentially follows the approach by
Nicolosi et al. [NKDM03] for two-party Schnorr signing. Upon receiving public parameters,
all participants first interactively generate a random matrix A ∈ Rk×`q , a part of Dilithium-
G public key. This can be securely done with simple random oracle commitments3; as
long as there is at least one honest party sampling a matrix share correctly, the resulting
combined matrix is guaranteed to follow the uniform distribution. For the exact same

3We remark that the “commitments” generated by H1 and H2 in Fig. 4.7 are not randomized, and
therefore they are not hiding. In our protocol, however, all committed values have high min-entropy and
this is indeed sufficient for the security proof to hold. Alternatively, one could cheaply turn them into
full-fledged secure and extractable commitments by additionally hashing random strings that are to be sent
out during the opening phase [Pas03].

86 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Parameter Description
n Number of parties
N A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N -th cyclotomic polynomial
q Prime modulus
R = Z[X]/(f(X)) Cyclotomic ring
Rq = Zq[X]/(f(X)) Ring
k The height of random matrices A
` The width of random matrices A
γ Parameter defining the tail-bound of Lemma 4.2
B = γσ

√
N(`+ k) The maximum L2-norm of signature share zj ∈ R`+k for j ∈ [n]

Bn =
√
nB The maximum L2-norm of combined signature z ∈ R`+k

κ The maximum L1-norm of challenge vector c
C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ} Challenge space where |C| =

(N
κ

)
2κ

Sη = {x ∈ R : ‖x‖∞ ≤ η} Set of small secrets
T = κη

√
N(`+ k) Chosen such that Lemma 4.4 holds

α Parameter defining σ and M
σ = s/

√
2π = αT Standard deviation of the Gaussian distribution

t = ω(
√

log(mN)) ∧ t = o(log(mN)) Parameter defining M such that Lemma 4.3 holds
M = et/α+1/(2α2) The expected number of restarts until a single party can proceed
Mn = Mn The expected number of restarts until all n parties proceed simultaneously
cpp Parameters for commitment scheme honestly generated with CSetup

l1, l2, l4 Output bit lengths of random oracles H1,H2 and H4

Table 4.2: Parameters for our distributed signature protocols.

reason, the exchange of tj ’s is also carried with the random oracle. This way, we can prevent
the adversary from choosing some malicious public key share depending on the honest
party’s share (the so-called rogue key attack [MOR01]). Furthermore, the party’s index j
is concatenated with the values to be hashed for the sake of “domain separation” [BDG20].
This way, we prevent rushing adversaries from simply sending back the hash coming from
the honest party and claiming that they know the preimage after seeing the honest party’s
opening.
Signature generation. The first crucial step of DS2.Signn in Fig. 4.7 is commitment
key generation at Inputs 3; in fact, if instead some fixed key ck was used for all signing
attempts, one could come up with a sub-exponential attack that outputs a valid forgery
with respect to the joint public key t. In [DOTT20] we sketch a variant of the concurrent
attack due to Drijvers et al. [DEF+19]. The original attack was against two-round Schnorr
multi-signatures including BCJ scheme [BCJ08], but due to the very similar structure of
FSwA-based lattice signatures an attack would become feasible against a fixed-key variant
of DS2. This motivates us to derive a message-dependent commitment key, following the
mBCJ scheme of Drijvers et al.

Then the signing protocol starts by exchanging the first “commit” messages of Σ-
protocol, from which all parties derive a single joint challenge c ∈ C via a random oracle.
As we discussed earlier no participants are allowed to reveal wj until the rejection sampling
phase, and instead they send its commitment comj , which is to be opened only if the
signature share zj passes the rejection sampling. Finally, the comj ’s and rj ’s are added
together in a meaningful way, thanks to the homomorphic property of commitment scheme.
Verification and correctness. Thanks to linearity of the underlying scheme and ho-
momorphism of the commitment, the verifier only needs to validate the sum of signature
shares, commitments and randomness. Here the Euclidean-norm bound Bn is set according
to Lemma 4.1; if all parties honestly follow the protocol then the sum of n Gaussian shares

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 87

Protocol 1: DS2.Genn(pp)

The protocol is parameterized by public parameters described in Table 4.2 and relies on the
random oracles H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → {0, 1}l2 .
Matrix Generation

1. Sample a random matrix share An
$← Rk×`q and generate a random oracle commit-

ment gn ← H1(An, n). Send out gn.
2. Upon receiving gj for all j ∈ [n− 1] send out An.
3. Upon receiving Aj for all j ∈ [n− 1]:

a. If H1(Aj , j) 6= gj for some j then send out abort.

b. Otherwise set public random matrix Ā := [A|I] ∈ R
k×(`+k)
q , where A :=∑

j∈[n] Aj .
Key Pair Generation

1. Sample a secret key share sn
$← S`+kη and compute a public key share tn := Āsn,

respectively, and generate a random oracle commitment g′n ← H2(tn, n). Send out
g′n.

2. Upon receiving g′j for all j ∈ [n− 1] send out tn.
3. Upon receiving tj for all j ∈ [n− 1]:

a. If H2(tj , j) 6= g′j for some j then send out abort.
b. Otherwise set a combined public key t := ∑

j∈[n] tj
If the protocol does not abort, Pn obtains (skn, pk) = (sn, (A, t)) as local output.

Algorithm DS2.Ver((com, z, r), µ, pk)

Upon receiving a message µ, signature (com, z, r), and combined public key pk = (A, t), generate
a commitment key ck ← H3(µ, pk), derive a challenge c ← H0(com, µ, pk) and reconstruct
w := Āz− ct. Then accept if ‖z‖2 ≤ Bn and Openck(com, r,w) = 1.

Figure 4.6: Distributed n-out-of-n signature scheme.

is only
√
n times larger (while if we employed the plain Dilithium as a base scheme then

the bound would grow almost linearly). Hence together with the tail-bound of Lemma 4.2
it is indeed sufficient to set Bn =

√
nB for the correctness to hold with overwhelming

probability. To guarantee perfect correctness, the bound check can be also carried out
during the signing protocol so that it simply restarts when the generated signature is too
large (which of course only happens with negligible probability and shouldn’t matter in
practice).

4.3.2 Asymptotic efficiency analysis

Number of aborts and signature size. As indicated in Table 4.2 the probability that
all participants simultaneously proceed is 1/Mn = 1/Mn, where 1/M is the probability
that each party asks to proceed. To make Mn reasonably small, say Mn = 3, we should
set α ≥ 11n [DLL+18], leading to σ ≥ 11nT . This already increases the bound B of

88 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Protocol 2: DS2.Signn(sid, skn, pk, µ)

The protocol is parameterized by public parameters described in Table 4.2 and relies on
the random oracles H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck. The protocol assumes that
DS2.Genn(pp) has been previously invoked. If a party halts with abort at any point, then all
Signn(sid, skn, pk, µ) executions are aborted.
Inputs

1. Pn receives a unique session ID sid, skn = sn, pk = (A, t) and message µ ∈ {0, 1}∗
as input.

2. Pn verifies that sid has not been used before (if it has been, the protocol is not
executed).

3. Pn locally computes a per-message commitment key ck← H3(µ, pk).
Signature Generation Pn works as follows:

1. Compute the first message as follows.

a. Sample yn
$← D`+k

s and compute wn := Āyn.

b. Compute comn ← Commitck(wn; rn) with rn $← D(Sr).
c. Send out comn.

2. Upon receiving comj for all j ∈ [n− 1] compute the signature share as follows.
a. Set com := ∑

j∈[n] comj .
b. Derive a challenge c← H0(com, µ, pk).
c. Computes a signature share zn := csn + yn.
d. Run the rejection sampling on input (csn, zn), i.e., with probability

min
(
1, D`+k

s (zn)/(M ·D`+k
csn,s(zn))

)
send out (zn, rn); otherwise send out restart and go to 1.

3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj)
for all j ∈ [n− 1] compute the combined signature as follows
a. For each j ∈ [n − 1] reconstruct wj := Āzj − ctj and validate the signature

share:
‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z := ∑

j∈[n] zj and r := ∑
j∈[n] rj .

If the protocol does not abort, Pn obtains a signature (com, z, r) as local output.

Figure 4.7: Distributed n-out-of-n signature scheme.

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 89

each signature share linearly compared to a non-distributed signature like Dilithium-G. In
addition, we should set the bound Bn for combined signature to

√
nB for the correctness

to hold, and thus the SIS solution that we find in the security reduction grows by a factor
of n3/2.

This translates to a signature size increase of a factor of roughly4 O(logn), so the
scaling in terms of the number of parties is reasonable. In addition, when using the
trapdoor commitment scheme of Section 4.5, one can substantially reduce the signature size
by using the common Fiat–Shamir trick of expressing the signature as (c, z, r) instead of
(com, z, r), and carrying out the verification by first recomputing the commitment using the
randomness r, and then checking the consistency of the challenge: c ?= H0(com, µ, pk). This
makes signature size somewhat closer to the original Dilithium-G, although commitment
randomness r may be still relatively large compared to z depending on the instantiation of
TCOM (see Section 4.5.2).

We expect that a number of further optimizations are possible to improve the efficiency
of this protocol in both asymptotic and concrete terms (e.g., by relying on stronger
assumptions like (Mod-)NTRU), although this is left for further work. Accordingly, we also
leave for further work the question of providing concrete parameters for the protocol, since
the methodology for setting parameters is currently a moving target (e.g., the original
parameters for Dilithium-G are not considered up-to-date), there is arguably no good
point of comparison in the literature (in particular, no previous lattice-based two-round
protocol), and again, a concrete instantiation would likely rely on stronger assumptions to
achieve better efficiency anyway.
Round complexity. If this protocol is used as it is, it only outputs a signature after
the three rounds with probability 1/Mn (which is 1/3 with the parameters above). As
a result, to effectively compute a signature, it has to be repeated Mn times on average,
and so the expected number of rounds is in fact larger than 2 (2Mn = 6 in this case).
One can of course adjust the parameters to reduce Mn to any constant greater than 1,
or even to 1 + o(1) by picking e.g. α = Θ(n1+ε); this results in an expected number of
rounds arbitrarily close to 2. Alternatively, one can keep a 2-round protocol while ensuring
that the parties output a signature with overwhelming probability, simply by running
sufficiently many parallel executions of the protocol at once: since the probability that all
τ parallel executions simultaneously restart is given by 2−λ = (1− 1/Mn)τ , we find that
τ = λ/

(
log Mn

Mn−1

)
parallel executions suffice if λ is the security parameter.

4.3.3 Security

The formal security claim for our DS2 protocol is given below.

Theorem 4.1. Suppose the trapdoor commitment scheme TCOM is secure, additively
homomorphic and has uniform keys. For any probabilistic polynomial-time adversary A
that initiates a single key generation protocol by querying ODS2

n with sid = 0, initiates Qs
4To be more precise, since the verification bound scales as n3/2, one should also increase q by the

same bound to avoid arithmetic overflow. This makes the MSIS problem harder, but the MLWE easier if
the dimension is kept unchanged. To keep the same security level, one should therefore also increase N
by a factor of 1 + O(logn

log q0
) where q0 is the value of q in the single-user setting. Therefore, one could in

principle argue that signature size actually scales as O(log2 n). However, one typically chooses q0 > 220,
and therefore even in settings with billions of parties, logn

log q0
< 2. Thus, one can effectively regard N as

independent of n.

90 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

signature generation protocols by querying ODS2
n with sid 6= 0, and makes Qh queries to

the random oracle H0,H1,H2,H3, the protocol DS2 of Fig. 4.7 is DS-UF-CMA secure under
MSISq,k,`+1,β and MLWEq,k,`,η assumptions, where β = 2

√
B2
n + κ. Concretely, using other

parameters specified in Table 4.2, the advantage of A is bounded as follows.

AdvDS-UF-CMA
DS2 (A) ≤ e · (Qh +Qs + 1) ·

(
(Qh +Qs)εtd +Qs ·

2e−t2/2
M

+ AdvMLWEq,k,`,η

+ (Qh + 1)Qh
2l1+1 + Qh

qk`N
+ n

2l1 + (Qh + 1)Qh
2l2+1 + Qh

qkN
+ n

2l2

+ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) ·
(
εbind + AdvMSISq,k,`+1,β

))

We first give a sketch of the security proof. We remark that its multi-signature variant
MS2 (Section 4.4) can be proven secure relying on essentially the same idea. We show that
given any efficient adversary A that creates a valid forgery with non-negligible probability,
one can break either MSISq,k,`+1,β assumption or computational binding of TCOM.
Key generation simulation. For the key generation phase, since the public key share
of the honest signer tn is indistinguishable from the vector sampled from Rkq uniformly at
random due to MLWEq,k,`,η assumption, the honest party oracle simulator can replace tn
with such a vector. Therefore, the distribution of combined public key t = ∑

j∈[n] tj is also
indistinguishable from the uniform distribution. Thanks to the random oracle commitment,
after the adversary has submitted g′j for each j ∈ [n− 1] one can extract the adversary’s
public key share tj , with which the simulator sets its share a posteriori tn := t−

∑
j∈[n−1] tj

and programs the random oracle accordingly H2(tn, n) := g′n. Using the same argument,
one can set a random matrix share An := A−

∑
j∈[n−1] Aj given a resulting random matrix

A $← Rk×`q . Now we can embed an instance of MSISq,k,`+1,β, which is denoted as [A′|I]
with A′ $← R

k×(`+1)
q . Due to the way we simulated the joint public key (A, t) is uniformly

distributed in Rk×`q ×Rkq , so replacing it with a MSISq,k,`+1,β instance doesn’t change the
view of adversary at all, if A′ is regarded as A′ = [A|t].
Signature generation simulation. The oracle simulation closely follows the one for
mBCJ [DEF+19]. Concretely, the oracle simulator programs H3 so that for each signing
query it returns tck generated via (tck, td)← TCGen(cpp), and for the specific crucial query
that is used to create a forgery it returns an actual commitment key ck ← CGen(cpp),
which has been received by the reduction algorithm as a problem instance of the binding
game. This way, upon receiving signing queries the oracle simulator can send out a “fake”
commitment comn ← TCommittck(td) at the first round, and then the known trapdoor td
allows to later equivocate to a simulated first message of the Σ-protocol after the joint
random challenge c ∈ C has been derived; formally, it samples a simulated signature share
zn

$← D`+k
s and then derives randomness as rn ← Eqvtck(td, comn,wn := Āzn − ctn). On

the other hand, when the reduction obtains two openings after applying the forking lemma
it can indeed break the binding property with respect to a real commitment key ck.
Forking lemma. Our proof is relying on the forking lemma [PS00a, BN06]. This is mainly
because we instantiated the protocol with a trapdoor commitment, which inevitably implies
that the binding is only computational. Hence to construct a reduction that breaks binding,
we do have to make the adversary submit two valid openings for a single commitment

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 91

under the same key, which seems to require some kind of rewinding technique. After
applying the forking lemma, the adversary submits two forgeries with distinct challenges
c∗ 6= ĉ∗, with which we can indeed find a solution to MSISq,k,`+1,β, or otherwise break
computational binding with respect to ck. Concretely, after invoking the forking lemma, we
obtain two forgeries (com∗, z∗, r∗, µ∗) and (ˆcom∗, ẑ∗, r̂∗, µ̂∗) such that c∗ = H(com∗, µ, pk) 6=
H(ˆcom∗, µ̂∗, pk) = ĉ∗, com∗ = ˆcom∗, µ∗ = µ̂∗, and H(µ∗, pk) = H(µ̂∗, pk) = ck. Since both
forgeries are verified, we have ‖z∗‖2 ≤ Bn ∧ ‖ẑ∗‖2 ≤ Bn, and

Openck(com∗, r∗, Āz∗ − c∗t) = Openck(com∗, r̂∗, Āẑ∗ − ĉ∗t) = 1.

If Āz∗ − c∗t 6= Āẑ∗ − ĉ∗t then it means that computational binding is broken with
respect to a commitment key ck. Suppose Āz∗ − c∗t = Āẑ∗ − ĉ∗t. Rearranging it leads to

[A|I|t]
[
z∗ − ẑ∗
ĉ∗ − c∗

]
= 0.

Recalling that [A′|I] = [A|t|I] is an instance of MSISq,k,`+1,β problem, we have found a
valid solution if β =

√
(2Bn)2 + 4κ, since ‖z∗ − ẑ∗‖2 ≤ 2Bn and 0 < ‖ĉ∗ − c∗‖2 ≤

√
4κ.

Full security proof.

Proof. Given A against DS2 we show that its advantage AdvDS-UF-CMA
DS2 (A) is negligible by

constructing a reduction. Without loss of generality we assume that Pn is an honest party.
Our first goal is to construct an algorithm B around A that simulates the behaviors of Pn
without using honestly generated key pairs. Then we invoke the forking algorithm FB from
Lemma 4.5 to obtain two forgeries with distinct challenges, which allow to construct a
solution to MSISq,k,`+1,β or to break computational binding of commitment scheme TCOM.
We present the resulting B in Fig. 4.8, together with its subroutines Figs. 4.9 to 4.13.
Below we discuss how to realize this via several intermediate hybrids.

G0 Random oracle simulation. We assume that B receives random samples hi $← C
for each i ∈ [Qh + Qs + 1] as input. The random oracles H0 : {0, 1}∗ → C, H1 :
{0, 1}∗ → {0, 1}l1 , H2 : {0, 1}∗ → {0, 1}l2 and H3 : {0, 1}∗ → Sck are simulated as
follows. The table HTi is initially empty. The B also maintains a counter ctr which
is initially set to 0. Note that the slightly involved simulation of H0 below will come
into play when the forking lemma is applied; this way, the adversary A’s view is
indeed identical until the forking point in two executions.

H0(x) 1. Parse x as (com, µ, pk); 2. Make a query H3(µ, pk), so that HT3[µ, pk]
is immediately set; 3. If HT0[com, µ, pk] = ⊥ then increment ctr and set
HT0[com, µ, pk] := hctr; 4. Return HT0[com, µ, pk].

H1(x) If HT1[x] is not set let HT1[x] $← {0, 1}l1 . Return HT1[x].

H2(x) If HT2[x] is not set let HT2[x] $← {0, 1}l2 . Return HT2[x].

H3(µ, pk) If HT3[µ, pk] is not set let HT3[µ, pk] $← Sck. Return HT3[µ, pk].

Honest party oracle simulation. In this game B behaves exactly like a single
honest party in DS2; concretely, it simulates an oracle ODS2

n (Fig. 4.3) which internally
invokes instructions of Genn and Signn according to Fig. 4.7, respectively.
Forgery. When A outputs a forgery (com∗, z∗, r∗, µ∗) at the end B proceeds as
follows.

92 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

1. If µ∗ ∈ Mset then B halts with output (0,⊥)
2. Make queries ck∗ ← H3(µ∗, pk) and c∗ ← H0(com∗, µ∗, pk)
3. If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts with output

(0,⊥).
4. Find if ∈ [Qh +Qs + 1] such that c∗ = hif and B halts with output (if , out =

(com∗, c∗, z∗, r∗, µ∗, ck∗))
Let Pr[Gi] denote a probability that B doesn’t output (0,⊥) at the game Gi. Then
we have

Pr[G0] = AdvDS-UF-CMA
DS2 (A).

G1 This game is identical to G0 except at the following points.
Random oracle simulation. Simulation of the random oracle H3 is analogous to
Drijvers et al. [DEF+19] The core idea is to make sure that all sign queries can be
responded with trapdoor commitments, which can be equivocated to an arbitrary
plaintext later, and that the forgery submitted by A involves the actual commitment
key. In this game B initially generates a single commitment key ck $← Sck. Then
upon receiving a query (µ, pk) to H3, B tosses a biased coin that comes out heads
with probability $ and tails with 1−$. If the coin comes out heads, then B invokes
TCGen to generate a commitment key–trapdoor pair (tck, td), stores tck and td in
tables HT3[µ, pk] and TDT[µ, pk], respectively, and returns tck; if it comes out tails,
then B stores a predefined ck in HT3[µ, pk] and returns ck. The complete description
of random oracle simulation is presented in Fig. 4.10.
Honest party oracle simulation. The B differs from the prior one at the following
steps in DS2.Signn.

Inputs 3 Call H3(µ, pk) to obtain tck. If TDT[µ, pk] = ⊥ (i.e., TCGen was not
called) then set a flag bad4 and halt with output (0,⊥). Otherwise obtain the
trapdoor td← TDT[µ, pk]
Signature Generation 1.b. Call comn ← TCommittck(td) instead of commit-
ting to wn.
Signature Generation 2.c. After computing zn := csn+yn derive randomness
rn ← Eqvtck(td, comn,wn).

Forgery. When A outputs a successful forgery (com∗, z∗, r∗, µ∗) at the end, we
modify the step 3 of G0 as follows.

Forgery 3 If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts
with output (0,⊥). If TDT[µ∗, pk] 6= ⊥ (i.e., TCGen was called for a query
H3(µ∗, pk)) then set bad5 and B halts with output (0,⊥).

Note that due to the way H3 is simulated, if B does not output (0,⊥) it is now
guaranteed that ck∗ = ck = H3(µ∗, pk). Recalling that TCOM is secure (Definition 4.4)
we have

Pr[G1] ≥ $Qh+Qs · (1−$) · Pr[G0]− (Qh +Qs) · εtd

because the simulation is only successful if the random oracle H3 internally uses
TCGen for all but one queries to H3 (both directly and indirectly via H0 and Signn)
and if H3 uses a predefined ck for a single crucial query (µ∗, pk) associated with

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 93

forgery; in other words, it is only successful if neither bad4 nor bad5 is set above. Note
that by setting $ = (Qh+Qs)/(Qh+Qs+1) since (1/(1+1/(Qh+Qs)))Qh+Qs ≥ 1/e
for Qh +Qs ≥ 0 we obtain

Pr[G1] ≥ Pr[G0]
e(Qh +Qs + 1) − (Qh +Qs) · εtd.

G2 This game is identical to G1 except at the following points.
Honest party oracle simulation. The B doesn’t honestly generate zn anymore
and instead simulates the rejection sampling as follows.

Signature Generation 1.a. B does nothing here.

Signature Generation 2.c. Sample zn
$← D`+k

s and derive randomness rn ←
Eqvtck(td, comn,wn := Āzn − ctn).
Signature Generation 2.d. With probability 1/M send out (zn, rn). Other-
wise send out restart.

The signature share zn simulated this way is statistically indistinguishable from the
real one because of special HVZK property of the underlying identification scheme.
In other words, we can directly apply the result of Lemmas 4.3 and 4.4. Hence we
have

|Pr[G2]− Pr[G1]| ≤ Qs ·
2e−t2/2
M

.

G3 At this stage, notice that the signing queries are simulated according to SimSignn in
Fig. 4.13, and it doesn’t rely on the actual secret key share sn anymore. So our next
goal is to simulate the generation of tn without using sn. In this game B first picks
the resulting random matrix A ∈ Rk×`q and defines its own share An a posteriori,
after extracting adversary’s committed shares A1, . . . ,An−1. This can be done by
searching the recorded random oracle queries in HT1. Note that the distributions of
A and An haven’t changed from the previous game. The formal simulation strategy
is described in Matrix Generation section of Fig. 4.12. Since G3 is identical to G2
from adversary A’s point of view except at the bad events marked there, we have

|Pr[G3]− Pr[G2]| ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] ≤ (Qh + 1)Qh
2l1+1 + Qh

qk`N
+ n

2l1

where Pr[bad1] corresponds to the probability that at least one collision occurs during
at most Qh queries to H1 made by A or B, which is at most ((Qh + 1)Qh/2)/2l1 ;
Pr[bad2] is the probability that programming the random oracle H1 fails, which
happens only if H1(An, n) has been previously asked by A during at most Qh queries
to H1, and the probability that guessing a uniformly random An by chance is at most
1/qk`N for each query; Pr[bad3] is the probability that A has predicted one of the
n− 1 outputs of random oracle H1 without making a query to it, which could only
happen with probability at most n/2l1 .

G4 This game is identical to G3 except that B simply picks the random public key share
tn

$← Rkq during the key generation phase, instead of computing tn = Āsn where
sn

$← S`+kη . As A follows the uniform distribution over Rk×`q , if the adversary A can
distinguish G3 and G4 then we can use A as a distinguisher that breaks MLWEq,k,`,η
assumption; hence we have

94 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

|Pr[G4]− Pr[G3]| ≤ AdvMLWEq,k,`,η .

G5 In this game B first picks the resulting public key t randomly from Rkq and defines its
own share tn a posteriori, after extracting adversary’s committed shares t1, . . . , tn−1.
This can be done by searching the recorded random oracle queries in HT2. Note that
the distributions of t and tn haven’t changed from the previous game. The formal
simulation strategy is described in Key Pair Generation section of Fig. 4.12. Since
G5 is identical to G4 from adversary A’s point of view except at the bad′ events
marked there, we have

|Pr[G5]− Pr[G4]| ≤ Pr[bad′1] + Pr[bad′2] + Pr[bad′3] ≤ (Qh + 1)Qh
2l2+1 + Qh

qkN
+ n

2l2
where the bounds are calculated just as in G3.

Forking lemma. At this stage, notice that the key generation query is simulated according
to SimGenn in Fig. 4.12. Our goal is to embed a challenge commitment key ck← CGen(cpp)
and an instance of MSISq,k,`+1,β , which is denoted as [A′|I] with A′ $← R

k×(`+1)
q . As in G5

the combined public key (A, t) is uniformly distributed in Rk×`q × Rkq , replacing it with
MSISq,k,`+1,β instance doesn’t change the view of adversary at all, if A′ is regarded as
A′ = [A|t]. Moreover, thanks to the simulation of H3 it is guaranteed that ck follows the
uniform distribution over Sck which is perfectly indistinguishable from honestly generated
ck← CGen(cpp) (since the keys are uniform). Hence we define the input generator IGen of
forking lemma such that it outputs the instance (ck,A, t).

Now we prove the theorem by constructing B′ around B in Fig. 4.8 that either (1) breaks
binding of commitment with respect to ck, or (2) finds a solution to MSISq,k,`+1,β on input
A′ = [A|t]. The B′ invokes the forking algorithm FB on input (ck,A, t) from Lemma 4.5.
Then with probability frk we immediately get two forgeries out = (com∗, c∗, z∗, r∗, µ∗, ck∗)
and ˆout = (ˆcom∗, ĉ∗, ẑ∗, r̂∗, µ̂∗, ĉk∗), where frk satisfies

Pr[G5] = acc ≤ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) · frk.

By construction of B and FB we have com∗ = ˆcom∗, µ∗ = µ̂∗ and c∗ 6= ĉ∗; until the
forking point ctr = if the adversary A’s view is identical in two executions. Moreover,
due to the simulation of H0 we also guarantee that ck∗ = ĉk∗ = ck since H3(µ∗, pk) and
H3(µ̂∗, pk) should have been invoked right before the fork. Since both forgeries are verified
under the same commitment key ck, we have ‖z∗‖2 ≤ Bn ∧ ‖ẑ∗‖2 ≤ Bn and

Openck(com∗, r∗, Āz∗ − c∗t) = Openck(com∗, r̂∗, Āẑ∗ − ĉ∗t) = 1.

If Āz∗ − c∗t 6= Āẑ∗ − ĉ∗t then B′ can break computational binding with respect to ck,
which succeeds with probability at most εbind. If Āz∗ − c∗t = Āẑ∗ − ĉ∗t, rearranging it
leads to

[A|I|t]
[
z∗ − ẑ∗
ĉ∗ − c∗

]
= 0.

Recalling that [A′|I] = [A|t|I] is an instance of MSISq,k,`+1,β problem, we have found a
valid solution if β =

√
(2Bn)2 + 4κ, since ‖z∗ − ẑ∗‖2 ≤ 2Bn and 0 < ‖ĉ∗ − c∗‖2 ≤

√
4κ.

Putting two cases together, we get

frk ≤ εbind + AdvMSISq,k,`+1,β .

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 95

Algorithm B((ck,A, t), h1, . . . , hQh+Qs+1)

The algorithm is initialized with empty hash tables HTi for i = 0, . . . , 3, trapdoor table TDT,
a set of queried messages Mset = ∅, and a counter ctr = 0.
Honest party oracle simulation Upon receiving a query of the form (sid,m) from A, reply

the query as described in SimODS2
n (sid,m) (Fig. 4.9). If SimODS2

n halts with output (0,⊥)
then B also halts with output (0,⊥).

Random oracle simulation Upon receiving a query to the random oracles from A, reply
the query as described in Fig. 4.10.

Forgery Upon receiving a forgery (com∗, z∗, r∗, µ∗) from A:
1. If µ∗ ∈ Mset then B halts with output (0,⊥)
2. Make queries ck∗ ← H3(µ∗, pk) and c∗ ← H0(com∗, µ∗, pk)
3. If Openck∗(com∗, Āz∗ − c∗t, r∗) 6= 1 or ‖z∗‖2 > Bn then B halts with output (0,⊥).

If TDT[µ∗, pk] 6= ⊥ (i.e., TCGen was called for a query H3(µ∗, pk)) then set bad5
and B halts with output (0,⊥).

4. Find if ∈ [Qh + Qs + 1] such that c∗ = hif and B halts with output (if , out =
(com∗, c∗, z∗, r∗, µ∗, ck∗))

Figure 4.8: The algorithm simulating the view of A in ExpDS-UF-CMA
DS2 (A) experiment

Oracle SimODS2
n (sid,m)

The simulator is initialized with public parameters pp generated by Setup algorithm. The
variable flag is initially set to false.
Key Generation Upon receiving (0,m), if flag = true then return ⊥. Otherwise do the

following:
• If the oracle is queried with sid = 0 for the first time then it initializes a machineM0

running the instructions SimGenn(pp,A, t) (Fig. 4.12). If Pn sends the first message
in the key generation protocol, then this message is the oracle reply.

• IfM0 has been already initialized then the oracle hands the machineM0 the next
incoming message m and returnsM0’s reply. IfM0 fails with output (0,⊥) at any
point then the oracle stops the simulation with output (0,⊥). If M0 concludes
SimGenn(pp,A, t) with local output (tn, pk), then set flag = true.

Signature Generation Upon receiving (sid,m) with sid 6= 0, if flag = false then return ⊥.
Otherwise do the following:

• If the oracle is queried with sid for the first time then parse the incoming message m
as µ. It initializes a machineMsid running the instructions of SimSignn(sid, tn, pk, µ)
(Fig. 4.13). The machine Msid is initialized with the key share and any state
information stored byM0. The message µ to be signed is included in Mset. If Pn
sends the first message in the signing protocol, then this message is the oracle reply.

• If Msid has been already initialized then the oracle hands the machine Msid the
next incoming message m and returns the next message sent byMsid. IfMsid fails
with output (0,⊥) at any point then the oracle stops the simulation with output
(0,⊥). IfMsid concludes with local output σ, then the output obtained byMsid is
returned.

Figure 4.9: Honest party oracle simulator for DS2.

96 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Algorithm Random Oracle Simulation

H0(x)
1. Parse x as (com, µ, pk)
2. Make a query H3(µ, pk)
3. If HT0[com, µ, pk] = ⊥ then increment ctr and set HT0[com, µ, pk] := hctr

4. Return HT0[com, µ, pk]
H1(x)

1. If HT1[x] = ⊥ then set HT1[x] $← {0, 1}l1

2. Return HT1[x]
H2(x)

1. If HT2[x] = ⊥ then set HT2[x] $← {0, 1}l2

2. Return HT2[x]
H3(x)

1. Parse x as (µ, pk)
2. If HT3[µ, pk] = ⊥:

• With probability $, compute (tck, td) ← TCGen(cpp), store the trapdoor in
TDT[µ, pk] := td and set HT3[µ, pk] := tck.

• Otherwise, set HT3[µ, pk] := ck.
3. Return HT3[µ, pk]

Figure 4.10: Random oracle simulator for DS2.

Algorithm SearchHashTable

Upon receiving the hash table HT together with hash values (h1, . . . , hn−1):
1. If for some j ∈ [n− 1] the preimage of hj doesn’t exist in HT then set the flag alert.
2. If for some j ∈ [n− 1] more than one preimages of hj exist in HT then set the flag

bad.
3. Return (alert, bad,m1, . . . ,mn−1), where for each j ∈ [n− 1] if there is no mj such

that HT[mj] = hj then mj = ⊥, and otherwise mj is defined such that HT[mj] = hj .

Figure 4.11: Routine for searching hash tables.

4.3. DS2: TWO-ROUND n-OUT-OF-n SIGNING FROM MODULE-LWE AND
MODULE-SIS 97

Algorithm SimGenn(pp,A, t)

Matrix Generation
1. Sample gn $← {0, 1}l1 and send out gn.
2. Upon receiving gj for all j ∈ [n− 1] proceed as follows:

a. Invoke SearchHashTable in Fig. 4.11 on input HT1 and (g1, . . . , gn−1) to obtain
(alert, bad1, (A1, 1), . . . , (An−1, n− 1)).

b. If the flag bad1 is set then simulation fails with output (0,⊥).

c. If the flag alert is set then pick An
$← Rk×`q . Otherwise using a predefined matrix

A define An := A−
∑n−1
j=1 Aj .

• If HT1[An, n] has been already set then set bad2 and simulation fails with
output (0,⊥).

• Otherwise program the random oracle HT1[An, n] := gn and send out An.
3. Upon receiving Aj for all j ∈ [n− 1]:

a. If H1(Aj , j) 6= gj for some j then send out abort.
b. If alert is set and H1(Aj , j) = gj for all j then set bad3 and simulation fails with

output (0,⊥).

c. Otherwise set a public random matrix Ā := [A|I] ∈ Rk×(`+k)
q .

Key Pair Generation

1. Sample g′n
$← {0, 1}l2 and send out g′n.

2. Upon receiving g′j for all j ∈ [n− 1] proceed as follows:
a. Invoke SearchHashTable in Fig. 4.11 on input HT2 and (g′1, . . . , g′n−1) to obtain

(alert′, bad′1, (t1, 1), . . . , (tn−1, n− 1)).
b. If the flag bad′1 is set then simulation fails with output (0,⊥).

c. If the flag alert′ is set then pick tn
$← Rkq . Otherwise using a predefined public

key t define tn := t−
∑n−1
j=1 tj .

• If HT2[tn, n] has been already set then set bad′2 and simulation fails with
output (0,⊥).

• Otherwise program the random oracle HT2[tn, n] := g′n and send out tn.
3. Upon receiving tj for all j ∈ [n− 1]:

a. If H2(tj , j) 6= g′j for some j then send out abort.
b. If alert′ is set and H2(tj , j) = g′j for all j then set bad′3 and simulation fails with

output (0,⊥).
If neither the protocol aborts nor the simulation fails, the simulator obtains public key share

tn and pk = (A, t) as local output.

Figure 4.12: Key generation simulator for DS2

98 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Algorithm SimSignn(sid, tn, pk, µ)

The simulator is parameterized by public parameters described in Table 4.2 and relies on
the random oracles H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck. The simulator assumes that
SimGenn(pp,A, t) (Fig. 4.12) has been previously invoked. If the simulator halts with abort
at any point, then all SimSignn(sid, tn, pk, µ) executions are aborted.
Inputs

1. The simulator receives a unique session ID sid, tn, pk = (A, t) and message µ ∈
{0, 1}∗ as input.

2. The simulator verifies that sid has not been used before (if it has been, the protocol
is not executed).

3. The simulator locally computes a per-message commitment key by querying a
random oracle tck← H3(µ, pk). If TDT[µ, pk] = ⊥ (i.e., TCGen was not called) then
set bad4 and simulation fails with output (0,⊥). Otherwise obtain the trapdoor
td← TDT[µ, pk].

Signature Generation
1. Compute the first message as follows.

a. Compute comn ← TCommittck(td).
b. Send out comn.

2. Upon receiving comj for all j ∈ [n− 1] compute the signature share as follows.
a. Set com := ∑

j∈[n] comj .
b. Derive a challenge c← H0(com, µ, pk).

c. Computes a simulated signature share zn
$← D`+k

s and derive randomness
rn ← Eqvtck(td, comn,wn = Āzn − ctn).

d. With probability 1/M send out (zn, rn); otherwise send out restart and go to
1.

3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj)
for all j ∈ [n− 1] compute the combined signature as follows
a. For each j ∈ [n − 1] reconstruct wj := Āzj − ctj and validate the signature

share:
‖zj‖2 ≤ B and Opentck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z := ∑

j∈[n] zj and r := ∑
j∈[n] rj .

If neither the protocol aborts nor the simulation fails, the simulator obtains a signature
(com, z, r) as local output.

Figure 4.13: Signature generation simulator for DS2.

4.4 MS2: Two-round Multi-signature in the Plain Public
Key Model

In this section we describe our two-round multi-signature scheme MS2. The main difference
from n-out-of-n signature is that, the protocol requires no interactive key generation at

4.4. MS2: TWO-ROUND MULTI-SIGNATURE IN THE PLAIN PUBLIC KEY
MODEL 99

Protocol 3: MS2.Sign(sid, skn, pkn, µ, L)

The protocol is parameterized by public parameters described in Table 4.2 and matrix Ā, and
relies on the random oracles H0 : {0, 1}∗ → C and H3 : {0, 1}∗ → Sck. The protocol assumes
that MS2.Gen(pp) has been previously invoked. If a party halts with abort at any point, then
all Sign(sid, skn, pkn, µ, L) executions are aborted.
Inputs

1. Pn receives a unique session ID sid, skn = sn, pk = tn, message µ ∈ {0, 1}∗ and a list
of public keys L as input. If n′ := |L| > n or tn /∈ L then send out abort. Otherwise
parse L as {t1, . . . , tn′−1, tn}.

2. Pn verifies that sid has not been used before (if it has been, the protocol is not
executed).

3. Pn locally computes a per-message commitment key ck← H3(µ,L).
Signature Generation Pn works as follows:

1. Compute the first message as follows.

a. Sample yn
$← D`+k

s and compute wn := Āyn.

b. Compute comn ← Commitck(wn; rn) with rn $← D(Sr).
c. Send out comn.

2. Upon receiving comj for all j ∈ [n′ − 1] compute the signature share as follows.
a. Set com := ∑

j∈[n′−1] comj + comn.
b. Derive a challenge cn ← H0(tn, com, µ, L).
c. Computes a signature share zn := cnsn + yn.
d. Run the rejection sampling on input (cnsn, zn), i.e., with probability

min
(
1, D`+k

s (zn)/(M ·D`+k
cnsn,s(zn))

)
send out (zn, rn); otherwise send out restart and go to 1.

3. Upon receiving restart from some party go to 1. Otherwise upon receiving (zj , rj)
for all j ∈ [n′ − 1] compute the combined signature as follows
a. For each j ∈ [n′ − 1] derive a per-user challenge cj ← H0(tj , com, µ, L), recon-

struct wj := Āzj − cjtj and validate the signature share:

‖zj‖2 ≤ B and Openck(comj , rj ,wj) = 1.

If the check fails for some j then send out abort.
b. Compute z := ∑

j∈[n′−1] zj + zn and r := ∑
j∈[n′−1] rj + rn.

If the protocol does not abort, Pn obtains a signature (com, z, r) as local output.

Algorithm MS2.Ver((com, z, r), µ, L)

Upon receiving a message µ, signature (com, z, r), and a set of public keys L, if |L| > n
then reject the signature. Otherwise for each j such that tj ∈ L derive a per-user
challenge cj ← H0(tj , com, µ, L) and reconstruct w := Āz −

∑
j cjtj . Then accept if

‖z‖2 ≤ Bn and Openck(com, r,w) = 1.

Figure 4.14: Two-round multi-signature secure in the plain public key model. The differences with
Fig. 4.7 are highlighted in orange.

100 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

all, and instead for each signing execution a party receives a set of public keys L together
with a message to be signed. As the number of participants may change for each signing
attempt, in this section we define n to be the maximum number of signers allowed in a
single execution of signing protocol, i.e., only L of cardinalty at most n is a valid input.

Now we present concrete specifications of MS2 = (Setup,Gen, Sign,Ver). The Setup
works just like the one for DS2, but it additionally outputs a matrix Ā = [A|I] ∈ Rk×(`+k)

q

as part of public parameters, so we assume that Ā is generated by a trusted third party (if
the generation of Ā has to be done in a distributed way then parties can invoke a matrix
generation protocol in Fig. 4.7 instead and a signer only uses Ā as long as it participated
in the generation of Ā). Then Gen algorithm is the same as Algorithm 6, except that it
takes Ā as input and outputs sk = s ∈ S`+kη and pk = t ∈ Rkq . In a multi-signature scheme,
the indices assigned to the signers are just local references to the cosigners participating
in a particular protocol instance [BN06], and therefore we wlog assume that each signer
assign the index n to itself, and consider other signers’ indices as 1, . . . , n′ − 1, where
n′ = |L| ≤ n. The signing protocol Sign and verification Ver are described in Fig. 4.14. The
only difference from DS2.Signn and DS2.Ver is that signature shares are now constructed
from per-user challenges, instead of a single common challenge for all co-signers (just as
Bellare–Neven [BN06] or Bagherzandi et al. [BCJ08] did). Therefore, the random oracle
simulation below is more involved than in the proof for Theorem 4.1. On the other hand, as
MS2 has no interactive key generation, the proof only requires much simpler key generation
simulation. Therefore, the concrete security bound in the following theorem is slightly
better than the previous case. Proof is deferred to [DOTT20].

Theorem 4.2. Suppose the trapdoor commitment scheme TCOM is secure, additively
homomorphic and has uniform keys. For any probabilistic polynomial-time adversary A
that initiates Qs signature generation protocols by querying OMS2

n , and makes Qh queries
to the random oracle H0,H3, the protocol MS2 of Fig. 4.14 is MS-UF-CMA secure under
MSISq,k,`+1,β and MLWEq,k,`,η assumptions, where β = 2

√
B2
n + κ. Concretely, using other

parameters specified in Table 4.2, the advantage of A is bounded as follows.

AdvMS-UF-CMA
MS2 (A) ≤ e · (Qh +Qs + 1) ·

(
(Qh +Qs)εtd +Qs ·

2e−t2/2
M

+ AdvMLWEq,k,`,η

+ Qh +Qs + 1
|C|

+
√

(Qh +Qs + 1) ·
(
εbind + AdvMSISq,k,`+1,β

))

4.5 Lattice-Based Commitments
In this section, we describe possible constructions for the lattice-based commitment schemes
used in our protocols. The three-round protocol DS3 requires a statistically binding,
computationally hiding homomorphic commitment scheme, whereas the two-round protocol
DS2 of Section 4.3 needs a statistically hiding trapdoor homomorphic commitment scheme.
We show that both types of commitments can be obtained using the techniques of Baum
et al. [BDL+18]. More precisely, the first type of commitment scheme is a simple variant
of the scheme of [BDL+18], in a parameter range that ensures statistical instead of just
computational binding. The fact that such a parameter choice is possible is folklore, and
does in fact appear in an earlier version of [BDL+18], so we do not claim any novelty in
that regard.

4.5. LATTICE-BASED COMMITMENTS 101

Protocol 4: Lattice-based statistically binding commitment

CSetup(1κ) takes a security parameter and outputs cpp = (q,N, k,m,m′, η).
CGen(cpp) takes a commitment parameter and outputs ck consisting of Â1 ∈ Rm×m

′
q and

Â2 ∈ Rk×m
′

q .

Â1 = [Im|Â′1] where Â′1
$← Rm×(m′−m)

q

Â2 = [0k×m|Ik|Â′2] where Â′2
$← Rk×(m′−m−k)

q

Commitck(x) takes x ∈ Rkq , samples the randomness vector r $← Dm′
s and outputs[

f1
f2

]
=
[
Â1
Â2

]
· r +

[
0m
x

]
.

Openck(f1, f2,x, r) checks that[
f1
f2

]
=
[
Â1
Â2

]
· r +

[
0m
x

]
and ‖r‖2 ≤ B

Figure 4.15: Statistically binding homomorphic commitment from [BDL+18]

The construction of a lattice-based trapdoor commitment scheme does not seem to
appear in the literature, but we show that it is again possible by combining [BDL+18]
with Micciancio–Peikert style trapdoors [MP12]. To prevent statistical learning attacks
on the trapdoor sampling, however, it is important to sample the randomness in the
commitment according to a discrete Gaussian distribution, in contrast with Baum et al.’s
original scheme.

4.5.1 Statistically Binding Commitment Scheme

We first describe a statistically binding commitment scheme from lattices. The scheme,
described in Fig. 4.15, is a simple variant of the scheme from [BDL+18], that mainly differs
in the choice of parameter regime: we choose parameters so as to make the underlying
SIS problem vacuously hard, and hence the scheme statistically binding. Another minor
change is the reliance on discrete Gaussian distributions, for somewhat more standard
and compact LWE parameters. The correctness and security properties, as well as the
constraints on parameters, are obtained as follows.
Correctness. By construction. We select the bound B as Ω(s ·

√
m′ ·N). By [MP12,

Lemma 2.9], this ensures that the probability to retry in the committing algorithm is
negligible.
Statistically binding. Suppose that an adversary can construct a commitment f on
two distinct messages x 6= x′, with the associated randomness r, r′. Since x 6= x′, the
correctness condition ensures that r and r′ are distinct and of norm ≤ B, and satisfy
Â1 · (r− r′) ≡ 0 (mod q). This means in particular that there are non zero elements in the
Euclidean ball Bm′(0, 2B) of radius 2B in Rm′q that map to 0 in Rmq . But this happens

102 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

with negligible probability on the choice of Â1 when
∣∣Bm′(0, 2B)

∣∣/qmN = 2−Ω(N). Now∣∣Bm′(0, 2B)
∣∣ = o

(
(2πe/m′N)m′N/2 · (2B)m′N

)
. Hence, picking for example m′ = 2m, we

get: ∣∣Bm′(0, 2B)
∣∣

qmN
�
(4πe ·B2

mNq

)mN
,

and the condition is satisfied for example with q > 8πeB2/mN .
Computationally hiding. The randomness r can be written in the form

[
r1 r2 s

]T where
r1 ∈ Rmq , r2 ∈ Rkq , s ∈ Rm′−m−kq are all sampled from discrete Gaussians of parameter s.

The commitment elements then become:

f1 = r1 + Â′1 ·
[
r2
s

]
f2 = r2 + Â′2 · s + x,

and distinguishing those values from uniform are clearly instances of decision MLWE.
Picking k = m, m′ = 2m, s = Θ(

√
mN), B = Θ(mN), q = Θ

(
(mN)3/2) yields a simple

instatiation with essentially standard security parameters.

4.5.2 Trapdoor Commitment Scheme

We now turn to the construction of a trapdoor commitment scheme with suitable homo-
morphic properties for our purposes. Our proposed scheme is described in Fig. 4.16. It is
presented as a commitment for a single ring element x ∈ Rq. It is straightforward to extend
it to support a vector x ∈ Rkq , but the efficiency gain from doing so is limited compared to
simply committing to each coefficient separately, so we omit the extension.

We briefly discuss the various correctness and security properties of the scheme, together
with the constraints that the various parameters need to satisfy. In short, we need to
pick the standard deviation of the coefficients of the trapdoor matrix R large enough
to ensure that the trapdoor key is statistically close to a normal commitment key; then,
the randomness r in commitments should have large enough standard deviation to make
commitments statistically close to uniform (and in particular statistically hiding), and also
be sampleable using the trapdoor. These are constraints on s̄ and s respectively. Finally,
the bound B for verification should be large enough to accomodate valid commitments,
and small enough compared to q to still make the scheme computationally binding (which
corresponds to the hardness of an underlying Ring-SIS problem). Let us now discuss the
properties one by one.
Correctness. By construction. We select the bound B as C · s ·

√
N(
√
`+ 2w + 1) where

C ≈ 1/
√

2π is the constant in [MP12, Lemma 2.9]. By that lemma, this ensures that
the probability to retry in the committing algorithm is negligible (and in particular, the
distribution of r after the rejection sampling is statistically close to the original Gaussian).
Computationally binding. Suppose that an adversary can construct a commitment
f on two distinct messages x 6= x′, with the associated randomness r, r′. Since x 6= x′,
the correctness condition ensures that r and r′ are distinct and of norm ≤ B, and satisfy
Â1 · (r− r′) ≡ 0 (mod q) where Â1 is the first row of Â. Therefore, the vector z = r− r′
is a solution of the Ring-SIS problem with bound 2B associated with Â1 (or equivalently,
to the MSISq,1,`+2w−1,2B problem), and finding such a solution is hard.

Note that since the first entry of Â1 is invertible, one can put it in the form [A|I] without
loss of generality to express it directly as an MSIS problem in the sense of Definition 4.2. It

4.5. LATTICE-BASED COMMITMENTS 103

also reduces tightly to standard Ring-SIS, because a random row vector in R`+2w
q contains

an invertible entry except with probability at most (N/q)`+2w = 1/NΩ(logN), which is
negligible.
Statistically hiding. It suffices to make sure that

Â ·D`+2w
s ≈s U(R2

q)

with high probability on the choice of Â. This is addressed by [LPR13, Corollary 7.5],
which shows that it suffices to pick s > 2N · q(2+2/N)/(`+2w).
Indistinguishability of the trapdoor. To ensure that the commitment key Â generated
by TCGen is indistinguishable from a regular commitment key, it suffices to ensure that
ĀR is statistically close to uniform. Again by [LPR13, Corollary 7.5], this is guaranteed
for s̄ > 2N · q(2+2/N)/`. By setting ` = w = dlog2 qe, we can thus pick s̄ = Θ(N).
Equivocability. It is clear that an r sampled according to the given lattice coset discrete
Gaussian is distributed as in the regular commitment algorithm (up to the negligible
statistical distance due to rejection sampling). The only constraint is thus on the Gaussian
parameter that can be achieved by the trapdoor Gaussian sampling algorithm. By [MP12,
§5.4], the constraint on s is as follows:

s ≥ ‖R‖ · ω(
√

logN)

where ‖R‖ ≤ C · s̄
√
N(
√
` +
√

2w + 1) by [MP12, Lemma 2.9]. Thus, one can pick
s = Θ(N3/2 log2N).

From the previous paragraphs, we can in particular see that the trapdoor commitment
satisfies the security requirements of Definition 4.4. Thus, to summarize, we have proved
the following theorem.

Theorem 4.3. The trapdoor commitment scheme of Fig. 4.16, with the following choice
of parameters:

s̄ = Θ(N) s = Θ(N3/2 log2N) B = Θ(N2 log3N)
` = w = dlog2 qe q = N2+ε (ε > 0, q prime).

is a secure trapdoor commitment scheme assuming that the MSISq,1,`+2w−1,2B problem is
hard.

Note that we did not strive for optimality in the parameter selection; a finer analysis is
likely to lead to a more compact scheme.

Furthermore, although the commitment has a linear structure that gives it homomorphic
features, we need to increase parameters slightly to support additive homomorphism: this
is because the standard deviation of the sum of n randomness vectors v is

√
n times larger.

Therefore, B (and accordingly q) should be increased by a factor of
√
n to accomodate

for n-party additive homomorphism. For constant n, of course, this does not affect the
asymptotic efficiency.

104 CHAPTER 4. TWO-ROUND MULTI-PARTY SIGNING FROM LATTICES

Protocol 5: Lattice-based Commitment Scheme

CSetup(1κ) takes a security parameter and outputs cpp = (N, q, s̄, s, B, `, w).

CGen(cpp) takes a commitment parameter and samples â1,1
$← R×q (a uniform invertible

element of Rq) and â1,j
$← Rq for j = 2, . . . , `+ 2w, â2,j

$← Rq for j = 3, . . . , `+ 2w. It
then outputs:

Â =
[
â1,1 â1,2 â1,3 · · · â1,`+2w
0 1 â2,3 · · · â2,`+2w

]
as ck.

Commitck(x) takes x ∈ Rq and samples a discrete Gaussian vector of randomness r $← D`+2w
s .

It then outputs

f = Â · r +
[

0
x

]
∈ R2

q .

To ensure perfect correctness, retry unless ‖r‖2 ≤ B.
Openck(f , r, x) takes commitments, randomness and message, and checks that

f = Â · r +
[

0
x

]
and ‖r‖2 ≤ B.

TCGen(cpp) takes a commitment parameter and samples Ā ∈ R2×`
q of the form:

Ā =
[
ā1,1 ā1,2 ā1,3 · · · ā1,`
0 1 ā2,3 · · · ā2,`

]

where all the āi,j are uniform in Rq, except ā1,1 which is uniform in R×q . It also samples
R $← D`×2w

s̄ with discrete Gaussian entries. It then outputs R as the trapdoor td and
Â =

[
Ā|G− ĀR

]
as the commitment key tck, where G is given by:

G =
[
1 2 · · · 2w−1 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2w−1

]
∈ R2×2w.

TCommittck(td) simply returns a uniformly random commitment f $← R2×1
q . There is no need

to keep a state.
Eqvtck(R, f , x) uses the trapdoor discrete Gaussian sampling algorithm of Micciancio–

Peikert [MP12, Algorithm 3] (or faster variants such as the one described in [GM18]) to
sample r $← DΛ⊥u (Â),s according to the discrete Gaussian of parameter s supported on the
lattice coset:

Λ⊥u (Â) =
{
z ∈ R`+2w : Â · z ≡ u (mod q)

}
where u = f −

[
0
x

]
.

Figure 4.16: Equivocable variant of the commitment from [BDL+18].

Chapter 5

Verifiable Encryption from
MPC-in-the-Head

5.1 Introduction

A verifiable encryption (VE) scheme is a public-key encryption scheme where one party
(called a prover P) can encrypt data w with a public key pk (of which the corresponding
decryption key sk is held by the receiver R), and convince a third party (called the verifier
V) that the data satisfies some relation R, i.e., R(x,w) = 1 with respect to some public
statement x. At a very high-level, an (interactive) VE scheme should satisfy the following
security properties [CD00]:

• Completeness: If P, V and R are honest then V accepts after interacting with P,
and R uses sk to obtain a plaintext w satisfying R(x,w) = 1.

• Zero knowledge: As V does not have the decryption key sk, she learns nothing
about the plaintext from interacting with P.

• Validity: If V accepts after interacting with a prover P∗, R is guaranteed to obtain
a plaintext w such that R(x,w) = 1, even if P∗ is malicious.

Our motivating example for verifiable encryption is the verifiable backup problem,
where a cryptographic device (such as a hardware security module (HSM)) or cloud service
(such as [AWS22a, AWS22b, AKV22, GK22]) that is entrusted to store key material must
securely export it for backup in case of hardware failure. These backups must be encrypted
(or “wrapped”) with the public key of another device, so that the plaintext keys are never
exposed outside of the secure hardware [YC22, PK15]. The administrator of the device,
responsible for creating backups, does not get assurance that the backup is well-formed,
and will import successfully on the new device. She could try the import operation, but
this may be expensive (e.g., if the backup device is in a separate facility), or risky (as it
spreads the key around more than necessary). This latter risk is well illustrated in the case
of cloud-based HSMs, where testing a backup by importing a key into a secondary cloud
provider greatly expands the trust boundary.

Even if the import operation succeeds, the admin should still test that the imported
private key corresponds to the expected public key, which typically requires using it to
create a test signature or decryption. This is undesirable for two reasons: it adds extra
use(s) of the key which must be logged for auditing, and it may also involve using the key

105

106 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

for a different purpose than it was created for. Ideally, the exporting device could prove
to the administrator that the ciphertext is a well-formed encryption under the receiving
device’s public key, and further, that the plaintext is a private key corresponding to a
particular public key, e.g., the device claims “I encrypted the ECDSA signing key x for a
public verification key y” and the administrator should be convinced that y = gx without
access to the plaintext x. If the exported key is a symmetric key, then the device should
prove that the plaintext is a key consistent with a commitment to the key, or a ciphertext
or MAC created with the key. Verifiable encryption is a natural solution to this problem.
Verifiable Encryption Despite being introduced more than two decades ago by Stadler
[Sta96] and becoming a well-defined primitive with a relatively general solution in the
work of Camenisch and Damgård [CD00], constructions suitable for the verifiable backup
problem are limited. There are multiple challenges. We need generality, to allow multiple
types of relation to be supported, not only a single one (as in [CS03, NRSW20, LN17]).
Our use case requires verifiable encryption of many types of keys (potentially all the types
here [PK22]), and at least ECC, RSA, and AES (the common types supported by cloud
providers [AWS22a, AKV22, GK22]). We also want to minimize the additional assumptions
required, ideally not requiring any new assumptions; for example if an AES key is to
be exported, encrypted under an RSA key, we should not need to make assumptions in
elliptic curve groups (perhaps with a pairing), as might be the case if certain SNARK proof
systems were used for verifiability [Gro16, MBKM19, BBB+18, LCKO19]. We also want
flexibility in the receiver’s public-key encryption (PKE) scheme, again to minimize new
assumptions, but also to support security goals like threshold decryption or post-quantum
security, rather than have a VE scheme that dictates the PKE the receiver must use
(as in [CS03, NRSW20, LN17]). Finally, performance must be good enough for use in
practice, which excludes using fully general proof systems (e.g., [Mic00, GMW87, GOS06]).
In summary, we desire a construction that is as general as possible, introduces no new
assumptions, and is performant enough to be practical.

There are multiple applications of verifiable encryption in the literature. Some early
examples are publicly verifiable secret sharing [Sta96], and verifiable encryption of signatures
for optimistic fair exchange [ASW98, Ate99]. Key escrow [YY98, PS00b], where parties
encrypt their private key to a trusted escrow authority, can be achieved with verifiable
encryption, since it becomes possible for other parties on the network to ensure that
the correct key has been escrowed. A common theme is identity escrow (or revokable
anonymity) in privacy systems and group signatures, where an anonymous party encrypts
their identity for an authority, who can de-anonymize them under certain circumstances.
In cryptographic voting systems, voters often encrypt their votes and prove that their
selection is in a set of valid choices (e.g., in {0, 1} to encode a “yes” or ”no” vote). The
earliest paper with this idea predates the literature on verifiable encryption [CF85] and
VE is still used in cryptographic voting systems today, see for example [EG21, CCFG16].
ZK from MPC The MPC-in-the-head (MPCitH) paradigm [IKOS07] is a way to create a
zero-knowledge (ZK) proof for a relation R, given a secure multiparty computation protocol
(MPC) to compute R. Some of the advantages of this approach make it well suited to
our verifiable encryption problem. First, MPC protocols are very flexible, so that we can
instantiate ZK proofs for many choices of R, typically expressed as binary or arithmetic
circuits. The paradigm extends beyond circuits as well: we give an MPCitH protocol to
prove knowledge of a discrete logarithm, and use our results to verifiably encrypt discrete
logs.

5.1. INTRODUCTION 107

P(w, x, pk) V(x, pk)

1. Generate random shares w1, w2, w3

such that w = w1 ⊕ w2 ⊕ w3

2. Run MPC for f(w) ?= x

to get view1, view2, view3

3. Sample randomness r1, r2, r3

4. Ci := Enc(pk, viewi; ri) for i ∈ [3] C1,C2,C3

ī ∈ {1, 2, 3}

(viewi, ri)i6=ī Check Ci
?= Enc(pk, viewi; ri) for i 6= ī.

Check (viewi)i6=ī are consistent.
Check (viewi)i6=ī output 1.

Compute w̃ :=
⊕
i 6=ī

wi.

If checks pass output C := (Cī, w̃)
as ciphertext.

. .

R(Cī, w̃, sk)
Get viewī := Dec(sk,Cī).
Extract wī from viewī.
Recover w := w̃ ⊕ wī.

Figure 5.1: High-level overview of our transform, applied to ZKBoo.

Second, if the MPC protocol is information theoretically secure, converting it to a
ZK proof only requires a secure commitment scheme, which can be instantiated with a
cryptographic hash function, so that the proof system requires minimal assumptions, and
is post-quantum secure. Finally, the performance of MPCitH proof systems in terms of
prover and verification costs and proof sizes are practical, and have been steadily improving
as has been demonstrated in the area of post-quantum signatures. To use the AES-128
circuit as an example, proof sizes went from 209 KB [GCZ16] to 32 KB [dDOS19] to
13 KB [BdK+21a] in the past five years, and the running time of the prover and verifier is
roughly 50ms (see the implementation benchmarks in [BdK+21a]). Taken together, these
properties will allow us to construct verifiable encryption schemes that are very general,
make minimal assumptions, achieve post-quantum (PQ) security and are efficient enough
for practical use.

5.1.1 Our Contributions and Techniques

Our results apply to a broad class of MPCitH proofs: those that can be viewed as an
interactive oracle proof (IOP). The original class from [IKOS07] is captured by the IOP
framework as well as many more recent MPCitH proofs aimed at concrete efficiency,
such as [GMO16, KKW18, BdK+21a, BN20, dOT21, Bd20, Beu20]. The IOP framework

108 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

of [BCS16] allows a modular design, and comes with definitions of zero-knowledge and
straight-line extractability that we need to prove our results. Revisiting some existing
MPCitH proofs as IOPs is a side contribution of this paper.
Generic compiler for MPC-in-the-head-based VE In Section 5.3 we give a compiler
that takes a proof protocol from the MPCitH-IOP class and converts it into a verifiable
encryption scheme, denoted MPCitH-VE. We describe MPCitH-VE as a public-coin three-
round interactive protocol, which can be made non-interactive using the standard Fiat-
Shamir transform [FS87]. An abstract protocol MPCitH-IOP captures several three-round
protocols, including [IKOS07], ZKBoo [GMO16], ZKB++ [CDG+17], and our new DKG-in-
the-head protocol described below. We also discuss using essentially the same idea to compile
KKW-IOP and Banquet-IOP (IOP versions of [KKW18] and [BdK+21a], respectively).

The other input to the compiler is a public key encryption (PKE) scheme, such as
Elgamal, RSA-OAEP or PQ-secure options like Kyber [SAB+20] or FrodoKEM [NAB+19].
We define and prove the requirements the PKE must have to ensure MPCitH-VE is secure.
In short, ciphertexts created by the PKE must be a secure commitment (both hiding
and binding) to the plaintext. Hiding is provided by CPA security (security against
chosen-plaintext attacks), and for binding, we define a new property called undeniability,
which is trivial for PKE schemes with perfect correctness, but may be absent otherwise.
Notably, lattice-based PQ schemes are usually not perfectly correct. In [TZ21] we prove
that the Fujisaki-Okamoto transform [FO99, FO13, HHK17] (and simpler variants of it)
can be used to upgrade any statistically correct PKE schemes to obtain undeniability,
making our construction compatible with many existing schemes. An implication is that
encryption schemes using the FO transform are secure commitment schemes, which might
be of independent interest.

Our framework is versatile: because the circuit proven by the MPC-in-the-head prover
is decoupled from a complex encryption function, the prover’s work can be focused on
proving properties (i.e., the relation R) about the encrypted data, not on the proof of
plaintext knowledge. Proof of plaintext knowledge is achieved with existing mechanisms in
the MPCitH proof. Hence, with our approach we can easily instantiate VE with various
combinations of R and PKE.

To illustrate the core idea of our transform, we sketch an example VE scheme based
on the ZKBoo proof system [GMO16], described at a high-level in Fig. 5.1. The original
ZKBoo protocol for relation R(x,w) := (f(w) ?= x) (where f is typically some one-way
function) proceeds as follows: the prover P first distributes to three parties additive shares
(w1, w2, w3) of the secret witness w. Then P runs an MPC protocol computing f(w) ?= x
“in the head”, to produce the view of each party, i.e., a string consisting of the input share,
output, communication, and random tape. P sends commitments to the views as its first
message, and the verifier V returns a challenge ī ∈ {1, 2, 3}, indicating party ī’s view is
supposed to remain secret. P then responds with the views of party i 6= ī and commitment
randomness. V accepts if the two commitments are correctly opened and they constitute a
correct run of MPC.

Now notice that one can immediately recover the witness once the remaining com-
mitment to party ī is revealed.1 Our main observation is that a technique similar to
straight-line extractable ZK proofs (see Section 5.1.2) gives rise to a secure VE scheme: by
replacing commitments in the original proof system with public-key encryptions, the prover

1In fact, this is how a knowledge extractor works when proving knowledge soundness of the scheme.

5.1. INTRODUCTION 109

P now sends three ciphertexts containing witness shares: Ci := Enc(pk, viewi) for i = 1, 2, 3.
The verifier still learns nothing about the encrypted data w since one of its additive shares
is kept encrypted. By contrast, the receiver R with knowledge of the decryption key sk can
decrypt the unopened ciphertext Cī (or commitment) to obtain the remaining share wī,
from which the plaintext w can be recovered using the shares (wi)i 6=ī revealed in the public
transcript. As usual, by applying the Fiat–Shamir transform [FS87], the above interactive
protocol can be turned into a non-interactive VE scheme in the random oracle model, as
we formally discuss in [TZ21].

Methods for compressing ciphertext In our compiler, essentially the transcript itself
is output as a ciphertext, after the prover P and verifier V interact in MPCitH-VE. While
the size of transcript is proportional to the number of parallel repetitions τ required to
guarantee negligible soundness error, the receiver R only needs one of them in case the
prover behaves honestly. To close this gap, in Section 5.4 we give two methods to compress
the VE ciphertexts. The first, called the random subset method, is very simple, incurs no
computational overhead, and can reduce ciphertext size by a factor of three when τ is
large. If τ is already small, it is also possible to trade ciphertext size for τ , which might be
desirable depending on the application.

The second approach, called the equality proof method, is optimal as it achieves constant
size ciphertexts, O(|w|) (provided PKE has constant ciphertext expansion). However, it
requires special properties of PKE, and significantly increases proof size, prover and verifier
computational costs, so it is more of a possibility result than a practical construction. We
highlight improving compression as an interesting direction for future work.

Concrete instantiations In Section 5.5 we describe concrete approaches to verifiably
encrypting discrete logarithms in any prime order group and AES keys.

The former is realized by our new non-interactive ZK protocol for the relation R ={
(y, x) : y = gx

}
, called distributed key generation in the head (DKG-in-the-head). In this

protocol, the prover emulates a protocol where parties run a DKG protocol to compute
y = gx. Since the DKG protocol only needs to have passive security and a broadcast
channel is available for free in the MPC-in-the-head setting, our proposed protocol is
extremely simple, requiring only a single round of interaction between parties.

To verifiably encrypt AES keys, our protocol is derived from the underlying interactive
ZK protocol of Banquet [BdK+21a], where P proves knowledge of an AES key used to
generate an AES ciphertext from a public plaintext, i.e., it is specialized for the relation
R =

{
((ct, pt),K) : ct = AESK(pt)

}
. Prior to this work, there has been no VE scheme for

verifiably encrypting AES keys, which may find interesting applications in the post-quantum
setting when instantiated with quantum-resilient PKE.

Revisiting the Camenisch-Damgård VE construction As a separate contribution,
we revisit the existing verifiable encryption of Camenisch and Damgård [CD00] in [TZ21]
and show that it fails to retain the validity property when instantiated with IND-CPA PKE
schemes that are only statistically correct, as opposed to perfectly correct. We describe
concrete attacks in which a malicious prover can convince the verifier to accept a ciphertext
that decrypts to random data unrelated to the R. Finally, we show that by additionally
assuming the undeniability property their construction can also be securely instantiated
with statistically correct PKE schemes.

110 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

5.1.2 Related Work

Camenisch–Damgård transform Although our generic transform is similar in spirit to
that of [CD00], there are some differences. Our starting point is any MPC-in-the-head
IOP with the straight-line extractable property, while [CD00] is focused on 2-special
sound Σ-protocols with 1-bit challenge space (though it seems possible to generalize their
transform to k-special sound protocols for any k as well). Although one can naïvely apply
[CD00] to some MPC-in-the-head protocols with k-special soundness, such as ZKBoo and
IKOS, our method directly modifies the committing function and thus leads to better
communication complexity. Moreover, [CD00] does not apply to more efficient MPC-in-
the-head constructions, including KKW and Banquet: because the challenge spaces of these
protocols are not limited to party indices the notion of special soundness is not well-defined.
In contrast, our transform relies on straight-line extractability, and therefore applies to
KKW and Banquet as well.
Camenisch–Shoup scheme Camenisch and Shoup [CS03] propose protocols for efficient
verifiable encryption and decryption of discrete logarithms. However, it only works for
discrete logarithms in a group where Paillier’s decision composite residuosity (DCR)
assumption holds, and the PKE is fixed to (a variant of) Paillier’s scheme as well. The
scheme is therefore not suitable for encrypting ECC, RSA or AES keys, one of our
motivating examples. In theory it is possible to prove that the plaintext of a Camenisch-
Shoup ciphertext corresponds to a discrete log from a prime order group. However, this
would require range proofs across the two groups, and security still relies on DCR (and
possibly more, depending on how the range proofs are done).
SNARK-based constructions Lee et al. [LCKO19] gives a construction of a verifiable
encryption scheme that is tailored to use in voting schemes as it is additively homomorphic
and supports rerandomization. The construction is pairing-based, Elgamal-like and thus
integrates well with SNARK proof systems. Just like our framework, theirs also decouples
the encryption function from the circuit describing the relation, using the commit-and-prove
SNARK of [CFQ19]. It requires a trusted setup assumption due to the use of CRS-based
SNARK, while ours is naturally transparent thanks to the underlying MPC-in-the-head
paradigm.

Nick et al. [NRSW20] gives a construction which can encrypt a discrete logarithm in
an elliptic curve group, using a special PRF called Purify. The scheme does allow, e.g.,
encryption of an ECDSA private key without any trusted setup assumption thanks to the
use of Bulletproofs [BBB+18], but requires that encryption be done with an Elgamal-like
PKE. As we compare in Table 5.1, their ciphertext and proof are more compact than those
of our DKG-in-the-head VE scheme, while ours requires less prover time. A complication
related to implementation of the Purify PRF is that one must choose an additional pair of
elliptic curves, related to the group order of the curve where the discrete logarithm is defined,
such that the DDH assumption holds. In contrast, our framework does not introduce any
additional assumption other than IND-CPA and undeniability of PKE (already satisfied by
perfectly correct schemes and many statistical ones as we analyze).
Lattice-based constructions Lyubashevsky and Neven [LN17] give a verifiable encryp-
tion scheme for lattices, based on the hardness of the ring learning with errors (RLWE)
problem. They give a proof of plaintext knowledge, secure in the ROM that does not
use parallel repetition to boost soundness. Their scheme can be further extended to
support CCA security. The analysis of our VE construction does not consider CCA security

5.1. INTRODUCTION 111

and it is not “one-shot” as MPC-in-the-head proofs usually rely on parallel repetition or
cut-and-choose unlike [LN17]. The construction comes with multiple caveats.

• A malicious prover may create a ciphertext that takes variable time to decrypt. In
particular decryption requires O(q) time to decrypt, where q is the number of hash
queries made by the prover. This makes decryption potentially very expensive.

• Decryption is not guaranteed to recover the original plaintext, but vectors with small
coefficients. It’s argued that this is sufficient for some of the applications considered
in [LN17], but may not be sufficient in general.

• The size of the proof and ciphertext are relatively large, for example proof sizes are
38–54 KB and ciphertext sizes are 48–71 KB. Proofs and ciphertexts may be as short
9 KB however, this is for verifiable encryption when there is no plaintext.

Isogeny-based construction Beullens et al. [BDK+21b] recently proposed a VE scheme
based on isogenies (or more generally, any cryptographically-hard group action). Their
main motivation is to construct a building block of a ring signature: their VE prover
essentially proves that (1) it encrypted a verification key vk, (2) vk belongs to a ring, and
(3) it knows the secret sk corresponding to vk. Although fairly efficient, their approach
inherently relies on Elgamal-like PKEs and it is highly specialized for the above limited
class of relation. On the other hand, our focus is to build a general framework to support
a large class of PKEs and relations as required for concrete solutions to the verifiable key
export problem described earlier.
MPCitH and IOP proof systemsWe briefly survey some of the many existing MPCitH-
based proof systems, optimized for different relations, as these immediately give verifiable
encryption schemes by applying our transform. [Beu20] gives an MPCitH-based proof of a
solution of an SIS (short integer solution) instance. We can apply our transform to construct
a verifiable encryption of SIS witnesses (here the witness is exact, not relaxed as in [LN17]).
The proof protocols in [Beu20] for other relations, such as the PKP and MQ problems, are
also compatible with our transform. [BN20] also gives multiple MPCitH-based proofs for
lattice problems (SIS), which are also amenable to our transform, but are outperformed by
the proofs of [Beu20]. The Limbo proof system [dOT21] is efficient for general R described
as circuits, making it a good choice for hash functions, or as an alternative to Banquet.
Gjøsteen et al. [GHM+21] present verifiable decryption protocols from MPCitH proofs, by
designing suitable distributed decryption protocols for Elgamal and BGV lattice-based
encryption schemes.

Aurora [BCR+19] and Ligero [AHIV17] are non-interactive proof systems for R1CS
that are constructed by defining an IOP, then making it non-interactive using the transform
in [BCS16]. Both have short proofs for relations involving lattices, and Aurora has the
shortest proofs for SIS, about 10x shorter than [Beu20, BN20]. As we mention in Section 5.6,
for this reason a more general transform for building VE schemes from IOPs in the [BCS16]
framework is interesting future work.
Connection between straight-line extraction and verifiable encryption Straight-
line extractability (SLE) (or sometimes called online extractability) is a special type of
extractability, specialized to proof systems in the ROM or in the CRS model. The prover
commits to witness-dependent strings via extractable commitments instantiated with the
RO or PKE, and the extractor is given the statement, the transcript, and the prover’s
query history (in the ROM) or a secret trapdoor (in the CRS model) to extract a witness.
In particular the straight-line extractor does not get any access to the prover, or ability

112 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

to rewind them. SLE is especially crucial for security in the QROM, since rewinding
techniques are generally prohibitively expensive in that setting. Numerous works achieve
SLE of commit-and-open-type proof systems (including MPC-in-the-head) [Pas03, KKW18,
DFMS21, HLR21], lattice-based ZK proof systems [Kat21], and straight-line extractable
alternatives to the Fiat-Shamir transform [Fis05, Unr15]. A receiver R of our MPCitH-VE
essentially behaves like a straight-line extractor for the MPC-in-the-head proof systems
whose commitments are replaced with PKE. In this work, we formally draw a connection
between the validity property of VE and SLE of IOP, a setting where commitments are
idealized and thus SLE holds very naturally.
Encryption as a Commitment Most natural public key encryption schemes are com-
mitting, and constructing a non-committing one (a deniable scheme) is challenging.

[GH03] defines committing public-key encryption, but defines the verification algorithm
in a more generic way than what is used in our verifiable encryption scheme and the one
of [CD00]. Rather than having the verifier recompute the ciphertext as we do, given the
purported (message, randomness) pair, the verify algorithm can be any function that takes
as input the message, and a hint produced by the opening function.

[GLR17, DGRW18] looks at committing encryption for symmetric-key AEAD schemes,
to support an analysis of a primitive called message franking, where participants in a
messaging platform can report abusive messages to the service provider. The name
encryptment is also used, a portmanteau of the terms encryption and commitment. The
schemes support many additional features beyond what is required for verifiable encryption
in our setting, and the definitions are consequently more complicated than those of [GH03].

[BDD20] recently proved that Pointcheval’s IND-CCA PKE [Poi00] can be used as a
secure commitment scheme as is, and it is thus plausible that their analysis can be adapted
to show undeniability of the scheme as well. Our analysis of the Fujisaki-Okamoto transform
also suggests that CCA conversions of this type are useful for obtaining undeniability (and
thus binding). It is an interesting follow-up question whether CCA security in general is
sufficient for PKE to be committing and/or undeniable.

The opposite of what we need is called deniable encryption [CDNO97]. Here the scheme
is carefully constructed so that the encryption is not a binding commitment to the message
and randomness, allowing a sender of a ciphertext to later claim they sent a different
message (hence denying the original message). After sending a ciphertext c = Enc(m; r)
then sender can later claim they sent (m′, r′), and anyone can check that c = Enc(m′; r′) as
well. This is why we use the name undeniable encryption to describe a scheme where this is
not possible. While a “sender-deniable encryption scheme” in the terminology of [CDNO97]
is sufficient as a counterexample to the analysis of [CD00], the example encryption schemes
we describe for this purpose in [TZ21] only require a weaker type of deniability.

Non-committing encryption [CFGN96, DN00] is related to deniable encryption, but
constructions are interactive and the goal is to improve certain types MPC protocols.
Briefly, in the security analysis, the simulator can use the fact that the encryption is not a
commitment to be able to create simulated ciphertexts, then later open them to plaintexts
that are consistent with later information.

Finally we mention witness encryption [GGSW13], which superficially sounds related,
since in VE we are encrypting a witness w that is associated to a statement x by a relation
R. However, a witness encryption scheme for R is a PKE-like primitive that allows us to
use x as a public key and w is the secret key. No witnesses are ever encrypted! Witness
encryption can be viewed as an encryption analog to signatures of knowledge [CL06], where

5.2. PRELIMINARIES 113

w is a signing key and x is a public key verification key.

5.2 Preliminaries

First we introduce some notation and conventions used throughout the paper. The security
parameter is denoted κ, and for an integer x, [x] is short for the set {1, . . . , x}. Whenever
we have a two-part adversary, written as a pair, e.g, (A∗,P∗), we assume that A∗ and P∗
share state, and do not explicitly write it as an output of A∗ and an input to P∗. For a
set S, we denote by x $← S sampling an element x from S uniformly at random.

In [TZ21], we introduce the standard notions of public-key encryption (PKE), ex-
tractable commitments (ECOM), and interactive oracle proofs (IOP).

5.2.1 Extractable commitment from perfectly correct PKE

In the following we show that most commonly used public-key encryption schemes give
rise to perfectly binding and computationally hiding commitment schemes. A similar
construction appears in [GH03], and is somewhat folklore, below we describe the exact
construction we will use, and analyze its security. Let PKE = (Gen,Enc,Dec) be a public key
encryption scheme. We construct a commitment scheme ECOM = (CGen,Commit,CExt)
as follows. For simplicity we assume throughout that the message space Sm and random
space Sr of the commitment schemes are identical to those of the encryption schemes.

• CGen(1κ) runs PKE.Gen(1κ) and outputs pk as the commitment key.
• Commit(pk,m; r) outputs c = PKE.Enc(pk,m; r).
• The opening of the commitment c is (m, r), and the verifier checks (m, r) against
c by computing c′ = Enc(pk,m, r); the opening is accepted iff c′ = c, m ∈ Sm and
r ∈ Sr.

• CExt(sk, c) outputs m = PKE.Dec(sk, c).

We now show this is a secure commitment scheme for perfectly correct, IND-CPA secure
encryption schemes. The two most commonly used choices of PKE, RSA and Elgamal,
both meet these requirements, and can be used as commitment schemes. Proof is deferred
to [TZ21].

Lemma 5.1. If PKE is perfectly correct and εcpa-IND-CPA secure, the above commitment
scheme is perfectly extractable, perfectly binding and εhide-computationally hiding with
εhide ≤ εcpa.

Note that for encryption schemes that are not perfectly correct, there can exist
(m,m′, r, r′) such that Enc(pk,m; r) = Enc(pk,m′; r′). In the full version [TZ21] we will
show two examples of such schemes, one based on decisional composite residuosity, and one
based on the learning with errors (LWE) problem. In general, the base encryption scheme
of post-quantum lattice-based candidates like FrodoKEM [NAB+19] and Kyber [SAB+20]
are CPA secure, but not perfectly correct, and even the complete CCA-secure schemes
may still be incorrect with bounded probability.

114 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

5.2.2 Verifiable encryption

We define a secure verifiable encryption scheme by adapting the definition from [CD00].
Non-interactive VE is formally defined in [TZ21]. The main difference with [CD00] is that
we additionally consider a compression algorithm C that takes a transcript exchanged
between a prover and a verifier, and outputs a corresponding ciphertext. In practice, C
would be run by the verifier right after interacting with the prover and obtaining a valid
transcript. We explicitly introduce this because our proposed construction will benefit
from different optimization strategies that postprocess accepting transcripts to produce a
highly compressed ciphertext. Moreover, unlike [CD00] we only consider ZK against honest
verifiers, since this is sufficient to prove ZK of non-interactive VE in the random oracle
model using the Fiat-Shamir transform.

Definition 5.1 (Verifiable Encryption Scheme). Let R be a relation and LR := {x :
∃w : (x,w) ∈ R}. A secure verifiable encryption scheme VER for R consists of a tuple
(G,P,V, C,R):

• G(1κ): A key generation algorithm that outputs a key pair (pk, sk).
• (P,V): A two-party protocol, where both P and V take (x, pk) and P additionally

takes a plaintext w as inputs. We let (b, tr)← 〈P(w),V〉(pk, x) denote the output pair
of V on common input (pk, x) when interacting with P(w), where b ∈ {0, 1} indicates
whether V accepts or rejects, and tr denotes a transcript exchanged between P and V.

• C(x, tr): A compression algorithm that outputs a compressed ciphertext C.
• R(sk, C): A receiver (or recovery) algorithm that outputs a plaintext w.

VE is secure if it satisfies the following three properties.
Completeness VER is εcomp-complete if for all (x,w) ∈ R.

Pr

b 6= 1 ∨ (x,w′) /∈ R :
(pk, sk)← G(1κ);

(b, tr)← 〈P(w),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)

 ≤ εcomp(κ)

Validity VER is εval-valid if for all pairs of PPT adversary (A∗,P∗),

Pr

b = 1 ∧ (x,w′) /∈ R :
(pk, sk)← G(1κ);x← A∗(pk, sk);

(b, tr)← 〈P∗(sk),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)

 ≤ εval(κ)

Computational Honest Verifier Zero-knowledge VER is εzk-HVZK if there exits a
PPT simulator S such that for all PPT distinguishers D, all (x,w) ∈ R,∣∣∣∣∣∣∣∣∣∣∣

Pr

i = i′ :

(pk, sk)← G(1κ);
(b, tr0)← 〈P(w),V〉(pk, x);

tr1 ← S(pk, x);

i
$← {0, 1}; i′ ← D(pk, x, tri);

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ εzk(κ)

Note that computational HVZK (as opposed to perfect, or statistical) is the best
possible in the context of verifiable encryption, as an unbounded adversary can always try
w′ = R(sk, C) with all possible sk, checking whether (x,w′) ∈ R.

5.2. PRELIMINARIES 115

Protocol 6: MPCitH-IOPR

Parameters: The number of parties N ; the number of parallel repetitions τ ; the number of
opened parties t; the challenge set Ch =

{
e ⊂ [N] : |e| = t

}
.

Inputs: prover P receives (x,w); verifier V receives x.
Committing phase The first-round message of V is empty. P proceeds as follows.

1. Choose random w1, . . . , wN such that w = ∑N
i=1wi.

2. Emulate “in her head” the execution of Πf on input (x,w1, . . . , wN).
3. Prepare, based on the execution, the share of the witness, and the randomness, the

views V1, . . . , VN of the N parties; P outputs the proof string π = (V1, . . . , VN).
Query phase

1. V chooses a random e ∈ Ch and queries the oracle for π with e.
2. The oracle returns (Vi)i∈e.

Decision phase: V accepts if and only if CheckView(x, (Vi)i∈e) = 1.
P and V execute τ instances of the above procedures in parallel. If V accepts in all τ

executions, it outputs b = 1; otherwise it outputs b = 0.

5.2.3 MPC-in-the-Head Proofs as IOPs

In Protocol 6 we describe the blueprint of a generic MPC-in-the-head protocol characterized
as a single-round IOP. The framework of IOPs allows for a modular design of ZK proof
systems and is becoming increasingly common for constructing efficient SNARKs and
MPC-in-the-head ZK proofs (e.g., [dOT21, CHM+20, CFF+20]). As in prior work, we
first design an information-theoretically secure protocol in the form of an IOP, where
commitments are idealized in that both hiding and binding hold unconditionally. This is
why the security properties for IOPs are defined w.r.t. unbounded adversaries, and the
computational assumptions will only come into play when we later compile the IOP into a
verifiable encryption scheme via a cryptographic commitment scheme with extractability.

In MPCitH-IOPR, P proves knowledge of a witness w such that R(x,w) = 1, where Πf

is an MPC protocol computing f that uses additive secret sharing over some finite field F,
and R(x,w) := (f(w) ?= x). This protocol is similar to the one from [IKOS07] relying on
the “idealized commitment functionality”, but modified to cover MPC protocols with a
broadcast functionality, so the prover may open 2 < t < N parties’ views instead of two.
We also employ the IOP framework following more recent MPC-in-the-head protocols such
as Ligero [BFH+20] and Limbo [dOT21]. As we shall see below, as an IOP protocol it
is straightforward to prove straight-line extractability of MPCitH-IOPR. This will allow
a smooth transition to SLE of the MPCitH proof systems we compile (with suitable
commitment schemes), then to the validity of the resulting verifiable encryption schemes.

Our description also has parallel repetition: a simpler protocol is repeated τ times in
parallel to increase soundness. These changes make presentation consistent with many
practical MPCitH proof protocols (e.g., ZKB++, KKW and Banquet all use (N−1)-private
MPC protocols with broadcast channels).

The helper function CheckView in MPCitH-IOPR takes the statement and a set of views
as input and returns 1 if:

1. The outputs of the opened parties (determined by their views) are 1, and

116 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

2. The opened views are consistent with each other, with respect to x and Πf ,
and returns 0 otherwise. We further define a utility function GetW, which takes a party’s
view and extracts their share of the witness from it.

We also introduce the notion of k-consistency, which essentially guarantees N views
form an honest run of Πf , as long as for any k distinct subsets of party indices, the
corresponding parties’ views are consistent with each other. This generalizes the notion of
pairwise consistency introduced previously in [IKOS07, Def. 2.2].

Definition 5.2 (k-consistency). A single repetition of the protocol MPCitH-IOPR has k-
consistency if for any x, for any set of views (V1, . . . , VN) and for any subset of the the
challenge space S ⊆ Ch such that |S| ≥ k, the following two conditions are equivalent:

1. for every e ∈ S, CheckView(x, (Vi)i∈e) = 1;
2. (V1, . . . , VN) form an honest execution of Πf on a public input x and the corresponding

per-party private inputs, wi = GetW(Vi), are such that x = f(∑i∈[N]wi).

Remark 5.1. The above notion captures several different instantiations of MPC-in-the-
head protocols. For example, the original protocol from [IKOS07, §3] opens 2-out-of-N
parties (i.e., t = 2 in MPCitH-IOPR) and satisfies

(N
2
)
-consistency because their Lemma

2.3 only guarantees the validity of N views as long as every possible pair of the views is
consistent. ZKBoo and ZKB++ are essentially a special case of that protocol with N = 3
and therefore they have 3-consistency. Looking ahead, our DKGitH protocol in Section 5.5.1
works with N parties and the challenge set Ch is all subsets of [N] of size t = N − 1.2 We
will show it satisfies 2-consistency thanks to the use of a broadcast functionality.

Definition 5.3 (Canonical extractor). An extractor E for one repetition of MPCitH-IOPR
is called canonical if on input x and π = (V1, . . . , VN), it works as follows: E obtains witness
shares via wi = GetW(Vi) for i ∈ [N] and then outputs a candidate witness w := ∑

i∈[N]wi.
For τ repetitions, the canonical extractor Eτ runs E on each repetition j ∈ [τ] and outputs
w(j) if (x,w(j)) ∈ R for some j, otherwise it outputs ⊥.

Now we prove knowledge error bounds for generic IOPs with k-consistency.

Lemma 5.2. If a single repetition of MPCitH-IOPR has k-consistency, then it is SLE with
respect to the canonical extractor E with knowledge error εsle-iop ≤ k−1

|Ch| .

Proof. Let Vi be the views output by a cheating prover P∗ in the committing phase and
e ∈ Ch is the challenge sampled uniformly by the verifier V in the query phase. Further,
let w′ = ∑

i∈[N] GetW(Vi). Our goal is to bound the probability

Pr
[
CheckView(x, (Vi)i∈e) = 1 ∧ (x,w′) /∈ R

]
. (5.1)

Define GoodCh :=
{
e ∈ Ch : CheckView(x, (Vi)i∈e) = 1

}
, i.e., a set of challenges that

are accepting with respect to views (Vi)i∈[N] committed to by P∗. If |GoodCh| ≥ k, then it
must be that (x,w′) ∈ R due to k-consistency, so the canonical extractor always succeeds.
If |GoodCh| < k, then since e is sampled from Ch independently of Vi and thus of GoodCh
as well, the probability that e falls in GoodCh is at most k−1

|Ch| .
2In practice, it suffices to send a single party index ī whose view is not to be revealed.

5.3. OUR TRANSFORM 117

One can easily generalize the above argument to deal with parallel repetitions. Proof is
deferred to [TZ21].

Lemma 5.3. If one repetition of MPCitH-IOPR has k-consistency, then τ parallel repeti-
tions are SLE with respect to the canonical knowledge extractor Eτ with knowledge error
εsle-iop ≤

(
k−1
|Ch|

)τ
.

Remark 5.2. We note that the above knowledge error is equivalent to the soundness error.
For example, for ZKBoo and ZKB++ we have that k = 3 and Ch = {{1, 2} , {2, 3} , {3, 1}}
and therefore both the SLE knowledge error and soundness error are (2/3)τ .

Finally, we recall the notion of t-privacy for an MPC protocol from [IKOS07]. We show
t-privacy implies HVZK of the MPC-in-the-head IOP. Although we only consider the case
of perfect t-privacy and HVZK, one can obtain a similar claim for statistical security of the
lemma following the result of [IKOS07].

Definition 5.4 (t-privacy). The protocol Πf is said to be t-private if there exists a
PPT simulator Sim such that for every e ∈ [N] of size at most t and for every input
(x,w1, . . . , wN), the joint view of parties in e is distributed identically to Sim(e, x, (wi)i∈e, b)
where b = 1 if (x,∑i∈[N]wi) ∈ R and b = 0 otherwise.

Lemma 5.4. If the MPC protocol Πf is t-private, then MPCitH-IOPR is perfectly HVZK.

Proof. An IOP simulator S takes x as input and proceeds as follows: (1) sample e ⊂ [N]
of size t uniformly at random, (2) choose uniformly random witness shares wi for i ∈ e, (3)
invoke Sim(e, x, (wi)i∈e, 1) to obtain joint views Vi for i ∈ e, and (4) output (e, (Vi)i∈e).
This perfectly simulates the view of V(x) in the honest interaction with P, since an honest
V always queries the oracle with a set of party indices of size t and thus the t-privacy
property guarantees perfect simulation of revealed views in the MPC execution.

5.2.3.1 Protocols without k-consistency

While the notion of k-consistency has some generality and gives a convenient way to
prove SLE of some three-round protocols, many MPC-in-the-head proof systems such as
KKW and Banquet have challenge spaces not limited to party indices and therefore do not
have k-consistency. However, we remark that they are easily checked to be straight-line
extractable since P outputs per-party views that include the shares of the witness in the
first round of the committing phase. The existing soundness analysis thus implies SLE of
the corresponding IOP protocols. See [TZ21] for details.

5.3 Our Transform

In this section we present our transform, which generically constructs a verifiable encryption
scheme MPCitH-VE from an MPCitH-IOP protocol in the class described in Protocol 6. We
start with a simple construction of extractable commitments from public-key encryption,
then come to our compiler in Section 5.3.2.

118 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

5.3.1 Extractable Commitments from Undeniable PKE

Given PKE = (Gen,Enc,Dec), we consider the extractable commitment scheme ECOM :=
(CGen,Commit,CExt) as defined in Section 5.2.1. As we shall see in later sections, IND-
CPA security of PKE is not sufficient for guaranteeing validity of the resulting verifiable
encryption, if the correctness is imperfect. The reason is that a malicious prover may be
able craft a ciphertext c∗ that can be correctly opened to plaintext m∗ such that it passes
validity checks performed by a verifier, while c∗ decrypts to junk during the recovery phase.
To prevent this attack, we require an additional property called undeniability. Intuitively,
undeniability forces an adversary to open any ciphertext to the plaintext identical to the
result of decryption. In Section 5.1.2 we discuss some similar (but different) notions from
the literature.

Definition 5.5 (Undeniability). We say that a public-key encryption scheme PKE =
(Gen,Enc,Dec) is εund-undeniable if for any PPT adversary A:

Pr

m 6= m′ ∧ c = Enc(pk,m; r) :
(sk, pk)← Gen(1κ);

(c,m, r)← A(pk, sk);
m′ := Dec(sk, c)

 ≤ εund(κ)

The following utility lemma guarantees that an undeniable IND-CPA encryption scheme
can be used as a secure extractable commitment with the simple construction given in
5.2.1.

Lemma 5.5. If PKE is εund-undeniable and εcpa-IND-CPA secure, then the commitment
scheme ECOM constructed from PKE is εcext-extractable with εcext ≤ εund, εbind-binding with
εbind ≤ εund and εhide-hiding with εhide ≤ εcpa.

Proof. We prove the three properties separately.
Extractability follows from undeniability. That is, if the adversary can output a tuple
(c,m, r) breaking the extractability of ECOM, it also holds that c = Enc(pk,m; r) and
m 6= Dec(sk, c). Therefore, (c,m, r) is also an instance breaking undeniability.
Binding follows from undeniability. Suppose there exists an adversary that outputs
a tuple (m, r,m′, r′, c) such that it breaks binding with non-negligible probability, i.e.,
c = Enc(pk,m; r) = Enc(pk,m′; r′) and m 6= m′.

Given such an efficient adversary A against the binding game, we construct another
adversary B that uses A to break undeniability as follows.

1. On receiving (pk, sk) as input, B forwards it to A.
2. When A outputs (c,m, r,m′, r′) such that c = Enc(pk,m; r) = Enc(pk,m′; r′) and
m 6= m′, the B first decrypts c: m̃ = Dec(sk, c) and proceeds as follows.
a) If m̃ 6= m, then B outputs (c,m, r) in the undeniability game.
b) If m̃ 6= m′, then B outputs (c,m′, r′) in the undeniability game.

Note that at least one of 2(a) or 2(b) must occur sincem 6= m′. In either case, B successfully
wins the undeniability game as long as A breaks binding. Clearly B succeeds with the same
probability as A, and B’s runtime is the same as A’s plus the cost of one Dec operation.
Hiding follows from the proof for Lemma 5.1, since it only relies on the IND-CPA security
of PKE.

5.3. OUR TRANSFORM 119

5.3.1.1 How to construct undeniable PKE

Validity of our generic compiler described in the next section heavily relies on extractable
commitments. The straightforward construction of ECOM requires undeniability, which is
not necessarily satisfied by public-key encryption schemes with statistical correctness. As
we shall see in [TZ21], this is not just a limitation in a security proof; a lack of undeniability
actually allows cheating provers to break validity entirely. A natural question is whether
one can generically add the undeniable property to any IND-CPA-secure encryption scheme
with statistical correctness. We answer this question in the affirmative by proving that
several variants of the Fujisaki–Okamoto transform [FO99, FO13, HHK17] can make a
given PKE scheme undeniable in the random oracle model.

For example, suppose we are given an encryption function Enc that takes a public
key, message, and random value as input, and a random oracle G that hashes into the
randomness space of Enc. The simplest FO transform [FO99] defines Enc′ such that

Enc′(pk,m; r) := Enc(pk,m||r; G(m||r)). (5.2)

A crucial observation is that cheating provers are now forced to derive encryption
randomness uniformly by querying the random oracle G. This makes it difficult to craft a
malicious ciphertext c from biased randomness, which decrypts to a plaintext inconsistent
with what she originally encrypted. Using the same observation we can also prove that
well-known FO-based CCA conversion methods employed by Kyber and FrodoKEM achieve
undeniability. Details are deferred to [TZ21].

5.3.2 Compiling MPCitH-IOP Into Verifiable Encryption

Our construction MPCitH-VE is given in Protocol 7. The description already incorpo-
rates the random subset optimization that will be analyzed in the next section. Here, we
focus on the case of n = τ for simplicity. As for the intuition for our construction, we
observed in Section 5.2.3 that for any MPCitH IOP following the [IKOS07] paradigm, there
exists a (canonical) straight-line extractor that recovers the witness from the committed
values of all parties. Recall that:

• The MPC protocol evaluates R with inputs x and w.
• The input x is public and w is shared amongst the parties.
• The view of each party must include their share of the witness and random tapes in

order to allow verification to check consistency, since some of the outgoing messages
of the parties must depend on both of these values.

Therefore, given the opening of the commitments of all parties (all N views), the extractor
can recover the witness based on the shares of all parties. For constructing ZK proofs
or signatures allowing for straight-line witness extraction, one can compile MPCitH-IOP
by letting a prover commit to every per-party view with random oracle commitments
as in [Pas03, KKW18, ZCD+20, DFMS21]: the extractor can reconstruct a witness by
observing the RO query history. However, this does not suffice for instantiating verifiable
encryption because the receiver (i.e., decryptor) in the real-world clearly has no access to
the query history.

Our compiler takes an alternative approach similar to [Kat21, HLR21], which simulta-
neously realizes a straight-line extractable ZK proof system and valid verifiable encryption

120 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

Protocol 7: MPCitH-VER

Converts the MPCitH-IOP prover P and verifier V to an MPCitH-VE prover P and verifier V
using the the extractable commitment scheme ECOM = (CGen,Commit,CExt) as constructed
in Section 5.3.1.
Parameters: The number of parties N ; the number of parallel repetitions τ ; the number

of opened parties t; the challenge set Ch =
{
e ∈ [N] : |e| = t

}
; the subset size for

compression n.
Key Generation G(1κ): It invokes (pk, sk)← CGen(1κ) and outputs (pk, sk).
Two-party protocol 〈P(w),V〉(pk, x):

1. P runs P on input (x,w) to obtain the proof string π = (V1, . . . , VN).
2. P separately commits to each of these N views to generate per-party commit-

ments (C1, . . . ,CN) where Ci = Commit(pk, Vi; ri) and ri is commitment randomness
uniformly sampled from Sr.

3. V invokes V on input x to obtain challenge e ∈ Ch, and sends it to P.
4. P opens the commitments of the t parties, by revealing (Vi, ri)i∈e.
5. V sends the views (Vi)i∈e to V as a response to the oracle query. It accepts if and

only if:
a) Ci = Commit(pk, Vi; ri) and r ∈ Sr for all i ∈ e, i.e., P opened the views

corresponding to (Ci)i∈e successfully, and
b) V outputs 1.

P and V execute τ instances of the above protocol in parallel. If V accepts in all τ
executions, it outputs b = 1 and a transcript

tr = ((C(j)
i)i∈[N], e(j), (V (j)

i , r
(j)
i)i∈e(j))j∈[τ] .

Otherwise, V outputs b = 0 and tr = ⊥.
Compression C(x, tr):

1. It samples a subset S ⊆ [τ] of size n ≤ τ uniformly at random.

2. For j ∈ S, extract the t witness shares w(j)
i = GetW(V (j)

i) for i ∈ e(j) and partially
reconstruct the witness w̃(j) = ∑

i∈e(j) w
(j)
i .

3. Output the compressed ciphertext C = (w̃(j), (C(j)
i)i/∈e(j))j∈S .

Receiver R(sk, C): To decrypt the ciphertext C, the receiver proceeds as follows.

1. For j ∈ S and i /∈ e(j), extract the unopened parties’ views V̂ (j)
i = CExt(sk,C(j)

i)
and computes the corresponding witness shares ŵ(j)

i = GetW(V̂ (j)
i). Let w(j) =

w̃(j) +∑
i/∈e(j) ŵ

(j)
i be the jth candidate witness.

2. If there exits some j ∈ S such that (x,w(j)) ∈ R, output w(j). Otherwise, output ⊥.

5.3. OUR TRANSFORM 121

scheme. By replacing the commitment function with an extractable commitment ECOM
(as defined in previous section) where the recipient has the decryption key sk, the recipient
can decrypt the commitments to the unopened view(s) and recover all openings, then use
the extractor algorithm to recover a witness. We remark that our transform naturally
generalizes to other types of MPCitH protocols as well, since all such protocols (we are
aware of) allow extraction of a witness given the openings of the per-party commitments
(and indeed use this in their security reductions).

Because our presentation assumes the witness is shared with an additive secret sharing
scheme, we make use of this to compress the ciphertext, by summing the t revealed shares
into the single value w̃. If the secret sharing scheme of Πf does not allow such partial
reconstruction, then the ciphertext may simply include all shares. When generalizing to
other types of secret sharing schemes the decryption operation must also be generalized to
reconstruct w from the shares of all parties.

Theorem 5.1. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 6 that is perfectly HVZK and SLE with knowledge error εsle-iop. Let ECOM be
an extractable commitment scheme that has εcext-extractability and is εhide-hiding. Then
the compiled protocol, MPCitH-VER described in Protocol 7 with n = τ , is εval-valid with
validity error εval = εsle-iop + εcext, and εzk-HVZK with εzk = τ(N − t)εhide.

HVZK directly follows from hiding of ECOM (and thus from IND-CPA of the underlying
PKE). Proof of validity essentially proceeds as follows: if an MPCitH-VE cheating prover
P∗ can convince the verifier V while the receiver fails to decrypt a correct witness, then
it must be that either (1) P∗ broke extractability of ECOM, or (2) one can construct a
pair of adversaries (A∗,P∗) that break SLE of MPCitH-IOPR. Adversaries (A∗,P∗) first
extract views from the commitments sent by P∗ and then forward them as a complete set
of N views in the SLE-IOP game. Formal proof is deferred to [TZ21].

5.3.2.1 Optimizations

While the prover in our generic compiler MPCitH-VE commits to a complete per-party
view Vi using ECOM, several standard optimization techniques in the literature also are
applicable in our setting for better computational and communication complexities. Notice
that R would only need witness shares (wi)i∈[N] to be able to recover the plaintext. Hence,
it would be sufficient to have the prover P commit to wi using ECOM, and to the rest
of the strings in Vi using the random oracle commitments as the ZKBoo/ZKB++ prover
does [GMO16, CDG+17]. Since ECOM is instantiated with PKE in practice while the RO
is instantiated with cryptographic hash functions, this would significantly reduce the size of
transcripts and could save both prover and verifier time for creating/opening commitments.

Moreover, following [KKW18], in case the MPC protocol Πf relies on a broadcast
channel and thus N − 1 out of N views are revealed, we can decouple broadcast messages
(msgsi)i∈[N] from per-party views to reduce the communication complexity, where each
msgsi consists of messages broadcast by party i. That is, the prover P first generates a
root seed sd∗ to derive per-party seeds (sdi)i∈[N] with a binary tree construction. P now
only commits to each seed sdi used for deriving a witness share and a random tape of party
i using ECOM, and sends h = H((msgsi)i∈[N]). On receiving challenge ī ∈ [N] from V,
indicating the index of unopened party, P reveals msgsī and dlog2(N)e nodes in the tree,
which are sufficient to compute (sdi)i∈[N]\{̄i}. From such information, V can reconstruct the

122 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

remaining broadcast messages, check h against broadcast messages sent by all N parties,
and check that N − 1 parties on input (sdi)i∈[N]\{̄i} lead to a correct output with respect
to x and msgsī.

Our DKG-in-the-head protocol in Section 5.5.1 benefits from these optimizations.

5.3.3 Compiling Banquet and KKW

Although the IOPs corresponding to KKW and Banquet (given in [TZ21]) are not exactly
in the class described by MPCitH-IOP, we can compile them into verifiable encryption
schemes using essentially the same idea.

To compile Banquet-IOP, it is sufficient to have the VE prover P commit to the per-
party seeds (sdi)i∈[N] with an extractable commitment scheme during the first round. The
second and third round operations are identical to the original Banquet-IOP protocol, and
the VE verifier V proceeds by following the decision phase of Banquet-IOP and accepts iff
V accepts and the N − 1 per-party commitments are opened correctly. The compression
and receiver algorithms C and R are defined analogously to those of MPCitH-VE, except
that the witness offset ∆w is added by C when creating a partially reconstructed witness w̃.
Since the receiver tries to decrypt by using the SLE extractor algorithm defined in [TZ21],
the compiled protocol has εval-validity with εval = εcext + εsle, assuming εcext-extractability
of ECOM and εsle-SLE of Banquet-IOP.

Likewise, we can compile KKW-IOP by having the VE prover P commit to the offline
per-party states (st(j)

i)i∈[N] with ECOM. On the other hand, the other commitments in
KKW-IOP can be instantiated with the usual random oracle commitments as in the original
KKW protocol. As we only need τ revealed online executions to recover a witness, the
compression algorithm C outputs as a ciphertext w̃(j) = ∑

i 6=īj λ
w
i ⊕ ŵ(j) and C(j)

īj
for

j ∈ T ⊂ [M], where each witness mask share λwi is obtained from the revealed value st(j)
i .

Then the receiver R extracts the unopened share of the witness mask from C(j)
īj

and XORs
it with ŵ(j) to recover a candidate witness.

5.3.4 Applying Fiat–Shamir

Following the standard Fiat–Shamir transform [FS87], we can make our verifiable encryption
protocol MPCitH-VE non-interactive in the random oracle model, by hashing the first prover
messages together with x and pk to obtain the challenge e ∈ Ch. Since the base interactive
protocol has three rounds, the FS transform introduces a multiplicative factor of q security
loss in validity, where q is the number of random oracle queries made by a non-interactive
cheating prover. Note that this loss is well-known in (knowledge) soundness analysis
for FS-NIZK proofs and EUF-KOA security of signatures constructed from canonical
identification schemes [KMP16]. Formal analysis is deferred to [TZ21]. Banquet-based
verifiable encryption however requires a separate concrete analysis dedicated to the non-
interactive version, since it has 7 rounds of interaction. Because the EUF-KOA security
analysis of Banquet as a signature scheme [BdK+21a, Theorem 2] already evaluates the
probability that the witness (i.e., secret signing key) extraction fails, their analysis can be
reused in large part to derive the concrete validity error of non-interactive Banquet-VE.
Construction of Banquet-NIVE and validity analysis are deferred to [TZ21].

5.4. METHODS FOR COMPRESSING CIPHERTEXTS 123

5.3.5 Achieving Strong Validity

To the best of our knowledge, prior definitions of validity for verifiable encryption in the
literature assume that the key generation phase is always performed honestly. One can
strengthen the validity property so that a cheating prover takes control of key generation.
Formally, we say a VE scheme has εsval-strong validity if for all pairs of PPT adversary
(A∗,P∗),

Pr

b = 1 ∧

(x,w′) /∈ R ∧
(pk, sk) ∈ G(1κ)

:
(x, pk, sk)← A∗(1κ);

(b, tr)← 〈P∗(sk),V〉(pk, x);
C ← C(x, tr);w′ ← R(sk, C)

 ≤ εsval(κ).

We remark that allowing A∗ to choose (pk, sk) is very strong, and that in practice it’s
not possible to check whether (pk, sk) ∈ G(1κ). However, without this condition, note that
A∗ can trivially break strong validity by generating a keypair then setting sk to 0. In the
context of our verifiable key backup scenario, the device could be encrypting the key to
a future instance of itself, or to another device in the same security domain. Here the
user must trust that the device importing the key has generated its keypair honestly. This
seems to be the best possible validity assurance when the device is responsible to store sk.

If ECOM is instantiated with a perfectly correct PKE, we can achieve strong validity of
MPCitH-VE. Observe that if PKE has perfect correctness, then for every key pair and for
every ciphertext, the corresponding plaintext is uniquely determined. Therefore, as long as
the key pair is in the right domain (which the verifier can easily check) undeniability can
never be broken regardless of the distribution of keys.

5.4 Methods for Compressing Ciphertexts
Because MPCitH protocols use τ parallel repetitions to boost soundness, the ciphertexts
output by our transform can be large. For example, for 128-bit security, τ could range
from 20 to 219. Each repetition outputs one PKE ciphertext and a share of the witness,
so the total size is τ(|PKE.Enc|+ |w|). Also, in the post-quantum PKE case, lattice-based
constructions can have relatively large ciphertexts. An interesting question is whether
these can be compressed, since these ciphertexts will usually be very redundant: note that
for an honestly created proof all τ repetitions encrypt the same witness (in different ways),
and the receiver will only need to decrypt one.

In this section we give two methods to compress the verifiable encryption ciphertexts
output by schemes created with our transform. The first, called the random subset method,
is very simple, incurs no computational overhead, and can reduce ciphertext size by a
factor of three when τ is large. The second approach, called the equality proof method,
is optimal as it achieves constant size ciphertexts, O(|w|) (provided PKE has constant
ciphertext expansion). However, it requires special properties of PKE, increases proof size,
prover and verifier computational costs significantly, so it is more of a possibility result
rather than a practical construction. We highlight improving compression as an interesting
direction for future work.

5.4.1 The Random Subset Method

This compression method is rather simple, but the impact on ciphertext size can be
significant, and the cost to the prover is nothing, and almost nothing to the verifier. That

124 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

is, we set n < τ in Protocol 7 to optimize the compression and receiver algorithms. Upon
receiving a verifiable encryption proof with our transform, the verifier has a set of τ
ciphertext components, corresponding to the τ parallel repetitions used to produce the
proof. The verifier chooses a subset of the ciphertexts to keep at random, and discards the
others. The size of the subset is denoted n, and is a parameter of the method.

We stress that soundness of the proof is unchanged, since the entire is proof is commu-
nicated to the verifier and checked. Only the analysis of the validity error must be updated,
since the receiver now has only n ciphertexts.

Let s be the number of ciphertexts in the initial set of size τ that are bad, meaning
they do not decrypt to the witness. For the proof systems we consider, having s > 0 is
quite easy, as it only requires guessing a small part of the challenge. Note that s must
be at least n, otherwise the attack against compression never succeeds, since V ’s output
always contains one or more valid ciphertexts.

Below we will choose parameters for the random subset method applied to different
proof systems, in the interactive case. The adversary P∗, is a cheating prover who knows
the witness, and tries to create a verifiable ciphertext where decryption fails. Then the
general form of P∗’s success probability is

Pr
[
C selects n of s bad ctexts ∧ V accepts a proof with s bad ctexts

]
= #subsets with n bad ctexts

of subsets · Pr
[
V accepts a proof with s bad ctexts

]
=
(s
n

)(τ
n

) · (εsle-iop(s) + εcext)

where εsle-iop(s) is the probability that an IOP prover wins the SLE-IOP game with s
parallel repetitions, and “ctexts” is short for ciphertexts. A more formal analysis is given
in [TZ21], where we prove the following theorem.

Theorem 5.2. Let MPCitH-IOPR be an MPC-in-the-head-based IOP in the class described
by Protocol 6 with SLE knowledge error εsle-iop. Let ECOM be an extractable commitment
scheme with εcext-extractability. Then MPCitH-VER is εval-valid with validity error

εval = max
n≤s≤τ

(s
n

)(τ
n

) · (εsle-iop(s) + εcext) .

Generally, the amount of compression possible is larger when τ is larger, as demonstrated
by the ZKB++ example (where τ = 219 for 128-bit security). The DKGitH example
requires much smaller τ (in the range 16–32), and compression is limited, or none at all.
However, we can increase τ to larger values than strictly necessary, in order to compress
the ciphertext further, see Fig. 5.2 for a range of options with fixed N and the first row of
Table 5.1 for a concrete example. This reduces ciphertext size at the expense of proof size,
which can be beneficial in applications that check the proof then discard it, but store the
ciphertext.

5.4.1.1 Application to IKOS/ZKBoo/ZKB++

We consider interactive IKOS-style protocols, such as ZKBoo and ZKB++. For each
repetition of the protocol, they have

(N
2
)
-consistency, where N is the number of parties.

As ZKBoo and ZKB++ have N = 3 and Ch = {1, 2, 3} they have 3-consistency and thus

5.4. METHODS FOR COMPRESSING CIPHERTEXTS 125

10 20 30 40 50 60 70
n

50

100

150

¡log2(²val) Random subset optimization for ZKBoo-VE
128-bit security
¿=219
¿=250
¿=300
¿=350

5 10 15 20 25 30
n0

50

100

150

¡log2(²val) Random subset optimization for DKGitH-VE with N=64
128-bit security
¿=22
¿=32
¿=48
¿=96

Figure 5.2: Approximate minimum cost of breaking validity of ZKBoo-based VE (left) and
DKGitH-based VE (right) with a random subset of size n. The parameter τ denotes the
number of parallel repetitions. The number of parties N is fixed to 3 for ZKBoo and 64 for
DKGitH, respectively. Note that τ = 219 corresponds to the picnic-L1 parameters from
the Picnic spec [ZCD+20].

are SLE with knowledge error εsle-iop(s) ≤ 2/3 from Lemma 5.2. Hence, if the verifier
outputs all τ ciphertexts, the validity error is εval(τ) ≤ (2/3)τ + εcext. If the random subset
optimization is applied, however, this will give cheating provers an extra strategy to break
validity: by breaking soundness only in s executions and performing the remaining τ − s
runs honestly using the genuine witness, the receiver in the validity game still fails to obtain
the right witness if the subset of size n is selected entirely from the s “bad” instances.
Hence, now the validity error can be calculated as

εval(τ, n) = max
n≤s≤τ

(s
n

)(τ
n

) · ((2
3

)s
+ εcext

)
.

In Fig. 5.2 we show the costs of breaking validity for different combinations of τ and
n assuming εcext is negligible. We see that n = 70 provides 128-bit security with τ = 219
repetitions, meaning we can compress ciphertexts by a factor 3 at no cost. If we increase
τ slightly to 250 (meaning proof size and prover/verifier time increase by roughly 1.14x)
then we can set n = 50 and compress ciphertexts by a factor 4.4.

5.4.1.2 Application to DKGitH

This is similar to IKOS, except that the default soundness error is different. Because
the corresponding MPC protocol uses a broadcast functionality, the prover reveals N − 1
parties’ views and thereby the knowledge error is at most 1/N , instead of 1−1/

(N
2
)
. Hence,

for τ parallel repetitions we have

εval(τ, n,N) = max
n≤s≤τ

(s
n

)(τ
n

) · ((1
N

)s
+ εcext

)
. (5.3)

In Fig. 5.2 we show the costs of breaking validity for different combinations of τ and n
assuming εcext is negligible. As τ is smaller, the amount of compression we get for free is
limited to only 2 ciphertexts (i.e., we can set n = 20 when τ = 22). The option of increasing
τ is again possible, but provides less compression and at a higher cost. In addition to the
choices of (n, τ) given in Fig. 5.2, Table 5.1 gives some concrete examples showing proof
and ciphertext size along with estimates of the prover and verifier times.

126 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

5.4.2 The Equality Proof Method

Recall that in a VE scheme created with our compiler, decryption iterates over the
component ciphertexts (from each parallel repetition) until the reconstruction function
recovers a witness. It is guaranteed that at least one of the component ciphertexts will
cause decryption to succeed.

In an honestly generated proof, all component ciphertexts are valid, and decryption
will always succeed on the first attempt. If after the VE protocol, the prover were able
to additionally prove that R would output the same witness from all of the component
ciphertexts, then the verifier could keep only one of the component ciphertexts, making
the VE ciphertext constant size. This is because either: all values are equal and correct, or
all values are equal and incorrect, but the latter case is equivalent to creating an invalid
proof, which is possible with only negligible probability by soundness of the proof protocol.

Note that the equality proof proves that R outputs the same value for all component
ciphertexts – and is not requiring that we prove the relation. The crux of R for MPCitH
protocols is recombining additive shares of the witness, a comparatively simple operation.
However one of the shares is encrypted, meaning we are back to proving something about
encrypted data. We describe one instantiation of the idea to show that this is possible
without resorting to general methods, by using PKE in a non-black-box way.

Theorem 5.3. Let Π be an MPCitH-based IOP in the class given by Protocol 6 with
t = N − 1, for a relation R where |w| = κ. Then there exists a VE scheme Π′ with a
compression algorithm that produces O(λ) ciphertexts for Π′, assuming Paillier’s encryption
scheme is IND-CPA secure.

Sketch. We describe the construction of the verifiable encryption scheme Π′. First we
compile Π to a VE scheme using a slight variant of Protocol 7. Namely, we split the
per-party commitments into two so that the share of the witness and other information
in the view are committed separately. Thus we have an additional commitment public
key pk′ for a second extractable commitment scheme Commit′ (which may be the same as
Commit, or a more efficient hash-based scheme, extractable in the ROM, since extraction
won’t be required for decryption). Then Ci = Commit(pk, Vi; ri) is instead computed as
Ci = (Commit(pk, wi; ri),Commit′(pk′, vi; si)), where (wlog) each view is assumed to be
Vi = wi||vi. Additionally, we assume that w is shared with XOR, so the shares are κ-bit
strings.

Next, Π′ is instantiated with extractable commitments constructed from the Paillier
encryption scheme. Paillier is IND-CPA secure under the decisional composite residuosity
assumption [Pai99], and encryption is perfectly correct, so it is a secure commitment
scheme by Lemma 5.1. Further, each bit of the witness share is encrypted separately which
will allow bitwise operations using the homomorphic properties of Paillier encryption.

The new compression algorithm C′ requires input from P (the equality proof) and V
runs it to check the proof and keep the final ciphertext. The steps for P are:

1. Run the compression algorithm C from Protocol 7, to get the set C = (w̃(j), Ĉ(j))j∈[τ],
where Ĉ(j) is the unopened commitment for the jth parallel execution. Since t = N−1
there is only one commitment per parallel repetition.

2. Recall that Ĉ(j) = Enc(pk, ŵ(j)) and w = ŵ(j)⊕ w̃(j). Using the additive homomomor-
phic property of encryption, compute C ′ = (Enc(ŵ(1) ⊕ w̃(1)), . . . ,Enc(ŵ(τ) ⊕ w̃(τ)))
as described in [TZ21]. This is possible because w̃(j) are public constants, and there

5.5. CONCRETE INSTANTIATIONS 127

is only one unopened party, so we only need to compute the XOR of one public and
one encrypted value.

3. Convert the set C ′ of bitwise encryptions of w, to the set C ′′ of integer encryptions
of w as described in [TZ21]. This is again possible using the homomorphic property,
by computing w = ∑κ

i=0 2iwi (converting from binary to integer), and choosing
paramters such that κ-bit strings fit in the plaintext space of Enc.

4. Prove all ciphertexts in C ′′ have the same plaintext. This step can be realized, e.g.,
with a standard generalization of Schnorr’s proof of knowledge of a discrete logarithm
(details in [TZ21]). A non-interactive equality proof π is output by P and sent to V.

The verifier V repeats Steps 1-3 to compute C ′′, then checks that π is valid. If so, V outputs
the first ciphertext in C ′′ as the encryption of w.

Since the output compression is one ciphertext, the resulting VE ciphertext clearly has
size O(λ).

In terms of security, the protocol until Step 2 of C′ is secure by Theorem 5.1, since the
modifications to the commitment scheme maintain the required extractability and hiding
properties. For the next part of C′, we argue that the plaintext transforms in Steps 2 and
3 to compute C ′′ are 1:1 and thus maintain validity. Because Theorem 5.1 guarantees that
the scheme is valid, decryption of C succeeds with overwhelming probability, which means
that at least one component ciphertext is an encryption of w that is valid, in particular
the plaintexts are guaranteed to be single bits. When a ciphertext in C is an encryption
of individual bits, then steps 2 and 3 are reversible, implying that if ciphertext j in C is
valid, then ciphertext j in C ′′ is also valid. Finally, as argued above since C ′′ contains
at least one valid encryption of w, all ciphertexts must encrypt w assuming the equality
proof in Step 4 is sound with overwhelming probability. The assumptions required for the
proof in Step 4 can vary, but with an interactive version of Schnorr’s proof we need only
assume that discrete logarithms are hard in the Paillier group, which is implied by the
DCR assumption required for security of Paillier encryption.

The construction has drawbacks that keep it from being practical, and it would be
interesting to address them. Because we require some (relatively weak) homomorphic
properties, we lose the flexibility in the choice of PKE, and a suitable PQ-secure instantiation
requires investigation. The cost of creating and communicating of the proof soars because
we require bitwise encryptions of witness shares, meaning the prover must compute O(τNλ)
individual Paillier encryptions. In practice this cost could be significantly reduced by using
bitwise exponential Elgamal, however then the final ciphertext would have to remain in
the bitwise representation (to allow efficient decryption) meaning the ciphertext would
have size O(λ2), rather than O(λ).

5.5 Concrete Instantiations

In this section we give some example instantiations for discrete logarithms, RSA and AES
to estimate the concrete performance of verifiable encryption realized with our transform.
Interactivity All of the performance estimates are given for the non-interactive versions of
proofs. However, we note that it is also possible in many applications (such as in verifiable
key backup) where the verifier will only accept a small number of failed attempts by a
prover, to use an interactive proof with 40–64 bits of interactive security (analogous to the

128 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

case of interactive identification schemes [FS87, Section 2.3]). For all the MPCitH protocols
we consider this reduces number of parallel repetitions significantly, in turn reducing the
prover and verifier time, proof size and ciphertext size by a factor 2–3.

5.5.1 Verifiable Encryption of Discrete Logs in Prime Order Groups

Perhaps the most fundamental relation in cryptography is the discrete logarithm in a prime
order group G, i.e., (y, x) such that y = gx where 〈g〉 = G. As an application our transform,
we give a new protocol to verifiably encrypt a discrete logarithm. We construct an MPC
protocol to compute y from shares of x, which naturally gives an MPCitH protocol to
prove knowledge of x. When compared to the most efficient proof of knowledge for discrete
logarithms, the Schnorr proof, our new protocol is much less efficient, but it is amenable
to our transform, and can therefore be used to verifiably encrypt discrete logs. We can
then verifiably encrypt DH, ECDH, DSA and ECDSA keys directly as key pairs for these
algorithms are discrete logs, and in Section 5.5.1.2 we explain how this scheme can also be
used to encrypt RSA keys.

As an aside, we remark that our new proof protocol has a tight reduction to the discrete
logarithm problem in the random oracle model. This feature is of theoretical interest as it
implies a signature scheme based on the discrete logarithm problem with a tight security
reduction.

Baselines for Comparison We compare to two protocols from the literature. The first is
the Camenisch-Damgård protocol [CD00] for a generic Σ protocol, combined with Schnorr’s
Σ-protocol [Sch91] for discrete logs with binary challenges. This is the only verifiable
encryption scheme we are aware of that works for discrete logarithms in any cyclic group,
and allows a flexible choice of PKE (as our protocol does). It also requires the random
oracle assumption to make the proof non-interactive.

The second, more efficient, protocol in [CD00] paper has k parallel repetitions, and the
verifier selects a subset to form the output, and audits the encryption step of the k − u
other repetitions (and the verifier checks all repetitions have a valid transcript for the Σ
protocol with one challenge). No parameters are given for concrete, non-interactive security
– we found that for κ-bit security, (k, u) must be chosen so that

(k
u

)
≥ 2κ. Then there are

multiple possible choices for (k, u), which trade ciphertext size for computation: we can
have a small decrease in ciphertext size, for a large increase in computation and proof size.
Our comparison in Table 5.1 gives some of the options.

Another VE scheme we compare to is from [NRSW20], which can encrypt a discrete
logarithm in an elliptic curve group, using a special PRF called Purify. The scheme does
allow, e.g., encryption of an ECDSA private key, but requires that encryption be done
with an Elgamal-like PKE. A complication related to implementation of the Purify PRF is
that one must choose an additional pair of elliptic curves, related to the group order of the
curve where the discrete logarithm is defined, such that the DDH assumption holds. In
addition to making these additional parameter choices, we must also make an assumption
beyond the DLP + PKE assumptions in G (as in [CD00] and our scheme).

We omit comparison to [CS03] since it only works for discrete logarithms in a group
suitable for Paillier’s encryption scheme, and the PKE is fixed to Paillier’s scheme as well.
The scheme is not suitable for encrypting an ECDSA private key, one of our motivating
examples.

5.5. CONCRETE INSTANTIATIONS 129

5.5.1.1 The proof protocol: DKG-in-the-head

We first describe the base non-interactive ZK proof system DKGitH for relation R ={
(y, x) : y = gx

}
. The core idea of the protocol is based on the additive homomorphism

of private keys, under multiplication of public keys, and may be folklore (an early reference
describing it is [Ped92]). To compute f(x) = gx

?= y in a distributed manner, the prover P
provides shares of x to the N parties such that x = ∑N

i=1 xi (mod p). Then P emulates a
simple distributed key generation (DKG) protocol Πf that proceeds as follows.

1. Each party i computes yi = gxi , and broadcasts yi.
2. Output y = ∏N

i=1 yi

P commits to the shares of the parties, and the yi values (together these two values
makeup party Pi’s view), then the verifier P selects one party to remain unopened, having
index ī. In the response, the prover sends the views of the other N−1 parties, along with y ī,
and a commitment to x ī. Based on the revealed values, V checks that y = y ī

∏
i∈[N],i 6=ī g

xi

and that each yi is computed correctly.
The protocol Πf is perfectly (N − 1)-private: suppose we are given the index of a

party ī, we show that we can simulate the views of the other N − 1 parties, such that
simulated and real transcripts are perfectly indistinguishable. First the simulator chooses
xi at random, for i 6= ī and computes yi = gxi , as in the real protocol. Then for party ī,
the simulator sets y ī = y/(∏i 6=ī yi). Note that

y ī = g
x−
∑

i 6=ī xi , and x ī = x−
∑
i 6=ī

xi

are distributed exactly as in the real protocol.
Along with the core idea, the full protocol DKGitH specified in [TZ21] uses two ideas

(originating in [KKW18]) that are now standard in protocols of this type. First, the shares
of the parties are computed by reading random values from their tapes, and the first share
is corrected with an auxiliary value that depends on the secret. Second, the tapes are
derived from a per-iteration seed with a binary tree construction, so that the N−1 revealed
seeds can be opened more efficiently by revealing dlog2(N)e seeds.

Remark 5.3. Although DKGitH already incorporates the optimizations described in Sec-
tion 5.3.2.1, the underlying MPCitH-IOP protocol instantiated with Πf does satisfy the
requirements from Section 5.2.3 so that our general compiler theorem applies: the challenge
space is Ch =

{
e ⊂ [N] : |e| = N − 1

}
; party i’s view Vi consists of (xi, (yi′)i′ 6=i); the

function GetW(Vi) outputs xi; the function CheckView(y, (Vi)i∈e) parses Vi as (xi, (yi′,i)i′ 6=i)
and checks y ?= gxi

∏
i′ 6=i yi′,i for all i ∈ e and yi′,i

?= gxi′ for i ∈ e and i′ ∈ [N] \ {i, ī},
where ī /∈ e is the index of the unopened party. We can prove the protocol has (i) 2-
consistency (Definition 5.2) and thus is (ii) SLE with εsle-iop = 1/N (Lemma 5.2). Showing
the condition 1. from 2. in Definition 5.2 is trivial. To show the converse, let e, e′ be two
distinct challenges. If CheckView outputs 1 w.r.t. both challenges, then for some i such
that i ∈ e∩ e′, it must be that y = gxi

∏
i′ 6=i g

xi′ = gx1+...+xN . Hence, (V1, . . . , VN) form an
honest execution of Πf on y and witness shares (xi)i∈[N] as inputs.

Applying our transform In [TZ21] we describe how chose parameters for 128-bit concrete
security, describe the hashed Elgamal PKE we use, and describe the optimizations we apply

130 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

Scheme N τ n k u |tr| |C| (RS) P exp. (ms) V exp. (ms)
DKGitH 64 48 15 7 744 1 536 (480) 6 144 (239.62) 6 048 (235.87)

85 20 20 3 584 640 (640) 3 400 (132.60) 3 360 (131.04)
16 32 30 4 160 1 024 (960) 1 024 (39.94) 960 (37.44)
4 64 48 6 208 2 048 (1 536) 512 (19.97) 384 (14.98)

[CD00] 712 20 35 100 1 922 2 880 (112.32) 2 880 (112.32)
250 30 13 500 2 884 1000 (39.00) 1000 (39.00)
132 64 9 424 6 152 528 (20.59) 528 (20.59)

[NRSW20] 1100 64 24 823 (968.10) 1 316 (51.32)

Table 5.1: Parameters and performance estimates for verifiable encryption of a discrete
logarithm. Our scheme is in the first part of the table, followed by the generic scheme
from [CD00] (combined with Schnorr’s proof protocol [Sch91]), followed by the Purify
PRF-based construction of [NRSW20]. Sizes are given in bytes. The ciphertext size for
our scheme when the random subset (Section 5.4.1) compression method is used is given in
parenthesis.

once these choices are fixed. We then explain how we obtained the size and speed estimates
used in this section.

Examples and comparison We give some concrete parameters showing various time-
speed trade offs, and compare to related work in Table 5.1. We give three parameter sets,
and estimate the size in bytes of the transcript tr, the VE ciphertext |C| (both with and
without random subset (RS) compression), as well as the computational costs of the prover
and verifier. For the costs we count the number of exponentiations, and for reference also
give an estimated time in milliseconds (ms) by using the timings given in [NRSW20] (based
on their benchmarks from an Intel i7-7820HQ system pinned to 2.90 GHz).

The options for our scheme offer short ciphertexts (480–640 bytes), at the expense of
higher prover and verifier times, or much lower times, but with larger ciphertexts (1536
bytes) and proof sizes, or somewhere in the middle.

When compared to [NRSW20], there the ciphertext size is a regular Elgamal ciphertext,
the proof size is about 1KB, but the prover and verifier times are 943ms and 50ms
respectively. Notably, the prover time is much lower with our scheme, about 10-24x faster
with the parameters shown.

We also compare to the [CD00] scheme with Schnorr’s Σ-protocol for discrete logs, using
the same hashed Elgamal scheme. It has proof size κ+ k`p + (k−u)κ+u`C and ciphertext
size u(`C + `p + 1). Prover and verifier must compute 4k exponentiations. In terms of
proof and VE ciphertext size, our scheme always outperforms [CD00]. The running time
of the prover and verifier are nearly the same.

5.5.1.2 Verifiable Encryption with RSA

There are two obvious ways to generalize the DKG-in-the-head idea to the RSA setting.
First, we can verifiably encrypt an RSA private exponent d, by using the above proof of a
discrete logarithm to prove knowledge of d such that (me)d = m (mod n), where (e, n) is
an RSA public key and m is an arbitrary value. Thus we can efficiently verifiably encrypt
RSA encryption and signing keys.

5.6. CONCLUSION AND FUTURE WORK 131

Second, we can prove knowledge of a preimage of a one-way group homomorphism. For
example, if the homomorphism is φ : m 7→ me mod n with n = p ·q, one can design a simple
MPCitH protocol for knowledge of an RSA preimage: the parties share m multiplicatively,
m = m1 · · ·mN (mod n) then broadcast φ(mi) = me

i , and then check that c = ∏
me
i

(mod n). This can be used to prove knowledge of an RSA plaintext corresponding to a
given ciphertext (a more direct type of verifiable encryption), or knowledge of a message
corresponding to a given signature. The MPC protocol can easily be extended to prove
additional properties of m as well.

5.5.2 Verifiable Encryption of AES Keys

With our transform applied to Banquet-IOP, one can verifiably encrypt an AES private
key used for generating a given public ciphertext. Concretely, since Banquet-IOP is
specialized for the relation R =

{
((ct, pt),K) : ct = AESK(pt)

}
, one can verifiably encrypt

K satisfying the relation R with any PKE. To the best of our knowledge, no prior work
proposed a verifiable encryption scheme for AES private keys. As AES keys are commonly
stored in hardware, this is also relevant for our verifiable backup scenario. Since AES
is considered PQ-secure, and encrypted data may have a long lifetime, in some systems
it is important that AES keys be exported with a matching level of security. If PKE is
instantiated with a quantum-resilient scheme, such as a lattice-based one, our verifiable
encryption has PQ security, in the sense that both the encryption scheme and relation to
be proven about the plaintext may withstand quantum attacks.

Verifiably encrypting an AES key with the hashed Elgamal scheme described in [TZ21]
has proof sizes that are only slightly larger than Banquet proofs for AES, since the
ciphertexts are only 16 bytes larger than hash-based commitments. For example, proofs
are 20.4 KB (N = 16, τ = 41), an overhead of less than 1KB, and ciphertexts are 2 KB.
Prover and verifier times are dominated by the cost of computing encryptions, but we
estimate the total time to be below 100ms (based on the time estimates used above and
those from [BdK+21a]).

As we analyze in [TZ21], variants of the FO transform can be used for achieving unde-
niability and thus many efficient post-quantum PKE schemes, including Kyber [SAB+20]
and FrodoKEM [NAB+19], are compatible with our framework. When our transform is
applied to Banquet with Kyber-512, the proof and ciphertext sizes expand significantly
(relative to Banquet proofs for AES), but remain practical, for example proofs are about
50 KB and ciphertexts 32.1 KB with the (N = 16, τ = 41) parameters. The prover and
verifier times are estimated to be below 200ms, roughly double the time required with
Elgamal.

5.6 Conclusion and Future Work

As our construction gives a practical way to verifiably encrypt ECC, DSA, DH, RSA and
AES keys, we have a complete and flexible solution to the verifiable backup problem for the
most common key types stored in hardware and cloud services. A notable exception are
keys for the HMAC algorithm. They can be handled with our transform and ZKB++ or
KKW, but with larger proof sizes due to the larger circuit size of the SHA2 or SHA3 hash
function. A more recent MPCitH protocol, Limbo [dOT21], can create proofs for SHA-256
that are 100-200 KB in size, and since Limbo is already described as an IOP it is a natural

132 CHAPTER 5. VERIFIABLE ENCRYPTION FROM MPC-IN-THE-HEAD

candidate for our VE transform. For even larger circuits, an ideal approach would be a
generalization of our compiler to construct VE schemes from more general IOPs, in order
to make use of proof systems where communication is sub-linear in the circuit size (such as
Ligero [AHIV17, BFH+20] and Aurora [BCR+19]), which currently outperform MPCitH
proofs for large circuits. Another minor gap in our solution to the the verifiable backup
problem is that strong validity (Section 5.3.5) is only guaranteed for perfectly correct PKE,
which means we require a stronger assumption when PKE is lattice-based.

Related to encryption, can the ciphertexts produced by our construction be made
CCA-secure? Currently they are if the entire proof transcript is sent to the receiver,
however, once compression outputs a ciphertext, note that the ciphertext can be modified
by dropping one of the individual PKE ciphertexts from one parallel repetition (even if
PKE is CCA secure). Having PKE support labels (as discussed in [CS03]) might allow the
set of PKE ciphertexts to be bound together. Also on the subject of CCA security, does
CCA security imply undeniability?

The DKG-in-the-head design strategy proved useful here, and may be worth exploring
further, since there is a large literature on distributed (or threshold) key generation upon
which to draw inspiration. It is also an interesting open question whether our approach to
VE leads to interesting instantiations of group and ring signatures, especially those targeting
post-quantum security as was done in [BDK+21b], or those based only on symmetric-
key primitives such as [KKW18, DRS18]. Finally, the performance and flexibility of our
compression method to achieve constant-sized ciphertexts (discussed in Section 5.4.2) needs
to be improved before it can be considered practical.

Bibliography

[A+] D. F. Aranha et al. RELIC is an Efficient LIbrary for Cryptography. https:
//github.com/relic-toolkit/relic. 20, 27

[AABN02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification
to signatures via the Fiat-Shamir transform: Minimizing assumptions for
security and forward-security. In EUROCRYPT 2002, vol. 2332 of LNCS, pp.
418–433. Springer, Heidelberg, 2002. DOI: 10.1007/3-540-46035-7_28. 4,
8, 9, 49

[AASA+19] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K. Liu,
C. Miller, D. Moody, R. Peralta, et al. Status report on the first round of
the NIST post-quantum cryptography standardization process. 2019. 41

[AB21] H. K. Alper and J. Burdges. Two-round trip schnorr multi-signatures via
delinearized witnesses. In CRYPTO 2021, Part I, vol. 12825 of LNCS,
pp. 157–188, Virtual Event, 2021. Springer, Heidelberg. DOI: 10.1007/
978-3-030-84242-0_7. 12, 68, 70

[ABC+22] D. F. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi,
and A. Takahashi. ECLIPSE: Enhanced Compiling Method for Pedersen-
Committed zkSNARK Engines. In PKC 2022, vol. 13177 of LNCS, pp. 584–
614. Springer, 2022. DOI: 10.1007/978-3-030-97121-2_21, Full version
available at https://eprint.iacr.org/2021/934.pdf. 13, 15

[ABE+21] D. F. Aranha, S. Berndt, T. Eisenbarth, O. Seker, A. Takahashi,
L. Wilke, and G. Zaverucha. Side-channel protections for Picnic sig-
natures. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):239–282,
2021. DOI: 10.46586/tches.v2021.i4.239-282, Full version available at
https://eprint.iacr.org/2021/735.pdf. Preliminary version appeared
at the 3rd NIST PQC Standardization Conference. 15

[ABF+16] T. Allan, B. B. Brumley, K. E. Falkner, J. van de Pol, and Y. Yarom.
Amplifying side channels through performance degradation. In ACSAC, pp.
422–435, 2016. 25, 29

[ABF+18] C. Ambrose, J. W. Bos, B. Fay, M. Joye, M. Lochter, and B. Murray.
Differential attacks on deterministic signatures. In CT-RSA 2018, vol.
10808 of LNCS, pp. 339–353. Springer, Heidelberg, 2018. DOI: 10.1007/
978-3-319-76953-0_18. 11, 41, 43, 49

133

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://dx.doi.org/10.1007/3-540-46035-7_28
https://dx.doi.org/10.1007/978-3-030-84242-0_7
https://dx.doi.org/10.1007/978-3-030-84242-0_7
https://dx.doi.org/10.1007/978-3-030-97121-2_21
https://eprint.iacr.org/2021/934.pdf
https://dx.doi.org/10.46586/tches.v2021.i4.239-282
https://eprint.iacr.org/2021/735.pdf
https://dx.doi.org/10.1007/978-3-319-76953-0_18
https://dx.doi.org/10.1007/978-3-319-76953-0_18

134 BIBLIOGRAPHY

[ABG10] O. Aciiçmez, B. B. Brumley, and P. Grabher. New results on instruction
cache attacks. In CHES 2010, vol. 6225 of LNCS, pp. 110–124. Springer,
Heidelberg, 2010. DOI: 10.1007/978-3-642-15031-9_8. 22

[ABuH+19] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri.
Port contention for fun and profit. In 2019 IEEE Symposium on Security
and Privacy, pp. 870–887. IEEE Computer Society Press, 2019. DOI: 10.
1109/SP.2019.00066. 10, 22, 25

[ACM+17] P. Austrin, K. Chung, M. Mahmoody, R. Pass, and K. Seth. On the
impossibility of cryptography with tamperable randomness. Algorithmica,
79(4):1052–1101, 2017. DOI: 10.1007/s00453-016-0219-7, https://doi.
org/10.1007/s00453-016-0219-7. 45

[AF04] M. Abe and S. Fehr. Adaptively secure feldman VSS and applications
to universally-composable threshold cryptography. In CRYPTO 2004, vol.
3152 of LNCS, pp. 317–334. Springer, Heidelberg, 2004. DOI: 10.1007/
978-3-540-28628-8_20. 68

[AFG+14] D. F. Aranha, P.-A. Fouque, B. Gérard, J.-G. Kammerer, M. Tibouchi, and
J.-C. Zapalowicz. GLV/GLS decomposition, power analysis, and attacks on
ECDSA signatures with single-bit nonce bias. In ASIACRYPT 2014, Part I,
vol. 8873 of LNCS, pp. 262–281. Springer, Heidelberg, 2014. DOI: 10.1007/
978-3-662-45611-8_14. 19, 20, 21, 25, 26, 30, 35, 37, 38, 51, 60

[AFLT16] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly
secure signatures from lossy identification schemes. Journal of Cryptology,
29(3):597–631, 2016. DOI: 10.1007/s00145-015-9203-7. 6, 73, 75

[AGM18] S. Agrawal, C. Ganesh, and P. Mohassel. Non-interactive zero-knowledge
proofs for composite statements. In CRYPTO 2018, Part III, vol.
10993 of LNCS, pp. 643–673. Springer, Heidelberg, 2018. DOI: 10.1007/
978-3-319-96878-0_22. 13

[AGS07] O. Aciiçmez, S. Gueron, and J.-P. Seifert. New branch prediction vulnera-
bilities in OpenSSL and necessary software countermeasures. In 11th IMA
International Conference on Cryptography and Coding, vol. 4887 of LNCS,
pp. 185–203. Springer, Heidelberg, 2007. 22

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In ACM CCS
2017, pp. 2087–2104. ACM Press, 2017. DOI: 10.1145/3133956.3134104.
111, 132

[AKV22] Microsoft Azure Key Vault Documentation: Key types, algorithms, and op-
erations, https://docs.microsoft.com/en-us/azure/key-vault/keys/
about-keys-details. 105, 106

[ANT+20a] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom.
LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In
ACM CCS 2020, pp. 225–242. ACM Press, 2020. DOI: 10.1145/3372297.
3417268. 10

https://dx.doi.org/10.1007/978-3-642-15031-9_8
https://dx.doi.org/10.1109/SP.2019.00066
https://dx.doi.org/10.1109/SP.2019.00066
https://dx.doi.org/10.1007/s00453-016-0219-7
https://doi.org/10.1007/s00453-016-0219-7
https://doi.org/10.1007/s00453-016-0219-7
https://dx.doi.org/10.1007/978-3-540-28628-8_20
https://dx.doi.org/10.1007/978-3-540-28628-8_20
https://dx.doi.org/10.1007/978-3-662-45611-8_14
https://dx.doi.org/10.1007/978-3-662-45611-8_14
https://dx.doi.org/10.1007/s00145-015-9203-7
https://dx.doi.org/10.1007/978-3-319-96878-0_22
https://dx.doi.org/10.1007/978-3-319-96878-0_22
https://dx.doi.org/10.1145/3133956.3134104
https://docs.microsoft.com/en-us/azure/key-vault/keys/about-keys-details
https://docs.microsoft.com/en-us/azure/key-vault/keys/about-keys-details
https://dx.doi.org/10.1145/3372297.3417268
https://dx.doi.org/10.1145/3372297.3417268

BIBLIOGRAPHY 135

[ANT+20b] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom.
LadderLeak: Breaking ECDSA with less than one bit of nonce leakage.
Cryptology ePrint Archive, Report 2020/615, Full version. Available at
https://eprint.iacr.org/2020/615.pdf. 10, 21, 23, 34, 37, 38, 39, 40

[AOTZ19] D. F. Aranha, C. Orlandi, A. Takahashi, and G. Zaverucha. Security
of hedged Fiat-Shamir signatures under fault attacks. Cryptology ePrint
Archive, Report 2019/956, Full version. Available at https://eprint.iacr.
org/2019/956.pdf. 11, 46, 47, 49, 51, 62, 64

[AOTZ20] D. F. Aranha, C. Orlandi, A. Takahashi, and G. Zaverucha. Security of
hedged Fiat-Shamir signatures under fault attacks. In EUROCRYPT 2020,
Part I, vol. 12105 of LNCS, pp. 644–674. Springer, Heidelberg, 2020. DOI: 10.
1007/978-3-030-45721-1_23. 11

[AS07] O. Acıiçmez and J.-P. Seifert. Cheap hardware parallelism implies cheap
security. In Fourth International Workshop on Fault Diagnosis and Tolerance
in Cryptography, pp. 80–91, Vienna, AT, 2007. 22

[ASW98] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital
signatures (extended abstract). In EUROCRYPT’98, vol. 1403 of LNCS, pp.
591–606. Springer, Heidelberg, 1998. DOI: 10.1007/BFb0054156. 106

[Ate99] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital
signatures. In ACM CCS 99, pp. 138–146. ACM Press, 1999. DOI: 10.1145/
319709.319728. 106

[AWS22a] Amazon Web Services CloudHSM Documentation: Using the command
line to manage keys, https://docs.aws.amazon.com/cloudhsm/latest/
userguide/using-kmu.html. 105, 106

[AWS22b] Amazon Web Services Key Management Service Documentation: AWS KMS
Keys, https://docs.aws.amazon.com/kms/latest/developerguide/
concepts.html#kms_keys. 105

[BAA+19] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann,
E. Eaton, G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E. Ricardini,
and G. Zanon. qTESLA. Technical report, National Institute of Stan-
dards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 11, 41, 68, 74

[Bab85] L. Babai. Trading group theory for randomness. In 17th ACM STOC, pp.
421–429. ACM Press, 1985. DOI: 10.1145/22145.22192. 1

[Bae14] M. Baert. Ed25519 leaks private key if public key is incorrect #170. https:
//github.com/jedisct1/libsodium/issues/170, 2014. 11, 41

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer
Society Press, 2018. DOI: 10.1109/SP.2018.00020. 106, 110

https://eprint.iacr.org/2020/615.pdf
https://eprint.iacr.org/2019/956.pdf
https://eprint.iacr.org/2019/956.pdf
https://dx.doi.org/10.1007/978-3-030-45721-1_23
https://dx.doi.org/10.1007/978-3-030-45721-1_23
https://dx.doi.org/10.1007/BFb0054156
https://dx.doi.org/10.1145/319709.319728
https://dx.doi.org/10.1145/319709.319728
https://docs.aws.amazon.com/cloudhsm/latest/userguide/using-kmu.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/using-kmu.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://dx.doi.org/10.1145/22145.22192
https://github.com/jedisct1/libsodium/issues/170
https://github.com/jedisct1/libsodium/issues/170
https://dx.doi.org/10.1109/SP.2018.00020

136 BIBLIOGRAPHY

[BBE+18] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi, and
M. Tibouchi. Masking the GLP lattice-based signature scheme at any order.
In EUROCRYPT 2018, Part II, vol. 10821 of LNCS, pp. 354–384. Springer,
Heidelberg, 2018. DOI: 10.1007/978-3-319-78375-8_12. 69, 74, 78

[BBE+19] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi, and M. Tibouchi.
GALACTICS: Gaussian sampling for lattice-based constant- time imple-
mentation of cryptographic signatures, revisited. In ACM CCS 2019, pp.
2147–2164. ACM Press, 2019. DOI: 10.1145/3319535.3363223. 69

[BBG+17] D. J. Bernstein, J. Breitner, D. Genkin, L. G. Bruinderink, N. Heninger,
T. Lange, C. van Vredendaal, and Y. Yarom. Sliding right into disaster: Left-
to-right sliding windows leak. In CHES 2017, vol. 10529 of LNCS, pp. 555–576.
Springer, Heidelberg, 2017. DOI: 10.1007/978-3-319-66787-4_27. 22

[BBN+09] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham,
and S. Yilek. Hedged public-key encryption: How to protect against bad
randomness. In ASIACRYPT 2009, vol. 5912 of LNCS, pp. 232–249. Springer,
Heidelberg, 2009. DOI: 10.1007/978-3-642-10366-7_14. 44

[BCJ08] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In ACM
CCS 2008, pp. 449–458. ACM Press, 2008. DOI: 10.1145/1455770.1455827.
68, 70, 86, 100

[BCJ11] A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard
knapsacks. In EUROCRYPT 2011, vol. 6632 of LNCS, pp. 364–385. Springer,
Heidelberg, 2011. DOI: 10.1007/978-3-642-20465-4_21. 34

[BCK+14] F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven.
Better zero-knowledge proofs for lattice encryption and their application to
group signatures. In ASIACRYPT 2014, Part I, vol. 8873 of LNCS, pp. 551–
572. Springer, Heidelberg, 2014. DOI: 10.1007/978-3-662-45611-8_29.
69, 78

[BCN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE,
94(2):370–382, 2006. DOI: 10.1109/JPROC.2005.862424, https://doi.
org/10.1109/JPROC.2005.862424. 45

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT 2019,
Part I, vol. 11476 of LNCS, pp. 103–128. Springer, Heidelberg, 2019. DOI: 10.
1007/978-3-030-17653-2_4. 111, 132

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In
TCC 2016-B, Part II, vol. 9986 of LNCS, pp. 31–60. Springer, Heidelberg,
2016. DOI: 10.1007/978-3-662-53644-5_2. 108, 111

[Bd20] W. Beullens and C. de Saint Guilhem. LegRoast: Efficient post-quantum
signatures from the Legendre PRF. In Post-Quantum Cryptography - 11th

https://dx.doi.org/10.1007/978-3-319-78375-8_12
https://dx.doi.org/10.1145/3319535.3363223
https://dx.doi.org/10.1007/978-3-319-66787-4_27
https://dx.doi.org/10.1007/978-3-642-10366-7_14
https://dx.doi.org/10.1145/1455770.1455827
https://dx.doi.org/10.1007/978-3-642-20465-4_21
https://dx.doi.org/10.1007/978-3-662-45611-8_29
https://dx.doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://dx.doi.org/10.1007/978-3-030-17653-2_4
https://dx.doi.org/10.1007/978-3-030-17653-2_4
https://dx.doi.org/10.1007/978-3-662-53644-5_2

BIBLIOGRAPHY 137

International Conference, PQCrypto 2020, pp. 130–150. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-44223-1_8. 107

[BD21] M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS
scheme. In ASIACRYPT 2021, Part IV, vol. 13093 of LNCS, pp. 650–678.
Springer, Heidelberg, 2021. DOI: 10.1007/978-3-030-92068-5_22. 12, 68

[BDD20] C. Baum, B. David, and R. Dowsley. (Public) Verifiability for composable
protocols without adaptivity or zero-knowledge. Cryptology ePrint Archive,
Report 2020/207, https://ia.cr/2020/207. 112

[BDF+11] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random oracles in a quantum world. In ASIACRYPT 2011,
vol. 7073 of LNCS, pp. 41–69. Springer, Heidelberg, 2011. DOI: 10.1007/
978-3-642-25385-0_3. 8

[BDF+14] G. Barthe, F. Dupressoir, P.-A. Fouque, B. Grégoire, M. Tibouchi, and J.-C.
Zapalowicz. Making RSA-PSS provably secure against non-random faults.
In CHES 2014, vol. 8731 of LNCS, pp. 206–222. Springer, Heidelberg, 2014.
DOI: 10.1007/978-3-662-44709-3_12. 44, 54

[BDG+13] N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. López-Alt,
and D. Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In TCC 2013,
vol. 7785 of LNCS, pp. 182–201. Springer, Heidelberg, 2013. DOI: 10.1007/
978-3-642-36594-2_11. 8

[BDG20] M. Bellare, H. Davis, and F. Günther. Separate your domains: NIST
PQC KEMs, oracle cloning and read-only indifferentiability. In EURO-
CRYPT 2020, Part II, vol. 12106 of LNCS, pp. 3–32. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-45724-2_1. 86

[BdK+21a] C. Baum, C. de Saint Guilhem, D. Kales, E. Orsini, P. Scholl, and G. Za-
verucha. Banquet: Short and fast signatures from AES. In PKC 2021,
Part I, vol. 12710 of LNCS, pp. 266–297. Springer, Heidelberg, 2021.
DOI: 10.1007/978-3-030-75245-3_11. 107, 108, 109, 122, 131

[BDK+21b] W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore. Group
signatures and more from isogenies and lattices: Generic, simple, and efficient.
Cryptology ePrint Archive, Report 2021/1366, https://eprint.iacr.org/
2021/1366. 111, 132

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In EUROCRYPT’97,
vol. 1233 of LNCS, pp. 37–51. Springer, Heidelberg, 1997. DOI: 10.1007/
3-540-69053-0_4. 10, 44

[BDL+12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89,
2012. DOI: 10.1007/s13389-012-0027-1. 11, 40, 41

https://dx.doi.org/10.1007/978-3-030-44223-1_8
https://dx.doi.org/10.1007/978-3-030-92068-5_22
https://ia.cr/2020/207
https://dx.doi.org/10.1007/978-3-642-25385-0_3
https://dx.doi.org/10.1007/978-3-642-25385-0_3
https://dx.doi.org/10.1007/978-3-662-44709-3_12
https://dx.doi.org/10.1007/978-3-642-36594-2_11
https://dx.doi.org/10.1007/978-3-642-36594-2_11
https://dx.doi.org/10.1007/978-3-030-45724-2_1
https://dx.doi.org/10.1007/978-3-030-75245-3_11
https://eprint.iacr.org/2021/1366
https://eprint.iacr.org/2021/1366
https://dx.doi.org/10.1007/3-540-69053-0_4
https://dx.doi.org/10.1007/3-540-69053-0_4
https://dx.doi.org/10.1007/s13389-012-0027-1

138 BIBLIOGRAPHY

[BDL+18] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More
efficient commitments from structured lattice assumptions. In SCN 18, vol.
11035 of LNCS, pp. 368–385. Springer, Heidelberg, 2018. DOI: 10.1007/
978-3-319-98113-0_20. 69, 100, 101, 104

[Beu20] W. Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In EUROCRYPT 2020, Part III, vol. 12107 of LNCS, pp. 183–211.
Springer, Heidelberg, 2020. DOI: 10.1007/978-3-030-45727-3_7. 107,
111

[BFH+20] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam, T. Xie, and
Y. Zhang. Ligero++: A new optimized sublinear IOP. In ACM CCS 2020,
pp. 2025–2038. ACM Press, 2020. DOI: 10.1145/3372297.3417893. 115,
132

[BFMT16] P. Belgarric, P.-A. Fouque, G. Macario-Rat, and M. Tibouchi. Side-channel
analysis of Weierstrass and Koblitz curve ECDSA on android smartphones.
In CT-RSA 2016, vol. 9610 of LNCS, pp. 236–252. Springer, Heidelberg,
2016. DOI: 10.1007/978-3-319-29485-8_14. 25

[BG93] M. Bellare and O. Goldreich. On defining proofs of knowledge. In
CRYPTO’92, vol. 740 of LNCS, pp. 390–420. Springer, Heidelberg, 1993.
DOI: 10.1007/3-540-48071-4_28. 3

[BGG+18] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen,
and A. Sahai. Threshold cryptosystems from threshold fully homomorphic
encryption. In CRYPTO 2018, Part I, vol. 10991 of LNCS, pp. 565–596.
Springer, Heidelberg, 2018. DOI: 10.1007/978-3-319-96884-1_19. 67, 74,
75

[BH15] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast de-
terministic and hedged public-key encryption in the standard model. In
EUROCRYPT 2015, Part II, vol. 9057 of LNCS, pp. 627–656. Springer,
Heidelberg, 2015. DOI: 10.1007/978-3-662-46803-6_21. 44

[BH19] J. Breitner and N. Heninger. Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In FC 2019, vol. 11598 of LNCS, pp.
3–20. Springer, Heidelberg, 2019. DOI: 10.1007/978-3-030-32101-7_1.
10

[BHH+19] M. Backes, L. Hanzlik, A. Herzberg, A. Kate, and I. Pryvalov. Efficient
non-interactive zero-knowledge proofs in cross-domains without trusted setup.
In PKC 2019, Part I, vol. 11442 of LNCS, pp. 286–313. Springer, Heidelberg,
2019. DOI: 10.1007/978-3-030-17253-4_10. 13

[BHLY16] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, gauss, and
reload - A cache attack on the BLISS lattice-based signature scheme. In
CHES 2016, vol. 9813 of LNCS, pp. 323–345. Springer, Heidelberg, 2016.
DOI: 10.1007/978-3-662-53140-2_16. 22

https://dx.doi.org/10.1007/978-3-319-98113-0_20
https://dx.doi.org/10.1007/978-3-319-98113-0_20
https://dx.doi.org/10.1007/978-3-030-45727-3_7
https://dx.doi.org/10.1145/3372297.3417893
https://dx.doi.org/10.1007/978-3-319-29485-8_14
https://dx.doi.org/10.1007/3-540-48071-4_28
https://dx.doi.org/10.1007/978-3-319-96884-1_19
https://dx.doi.org/10.1007/978-3-662-46803-6_21
https://dx.doi.org/10.1007/978-3-030-32101-7_1
https://dx.doi.org/10.1007/978-3-030-17253-4_10
https://dx.doi.org/10.1007/978-3-662-53140-2_16

BIBLIOGRAPHY 139

[BK03] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT 2003, vol.
2656 of LNCS, pp. 491–506. Springer, Heidelberg, 2003. DOI: 10.1007/
3-540-39200-9_31. 45

[BKLP15] F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In
ESORICS 2015, Part I, vol. 9326 of LNCS, pp. 305–325. Springer, Heidelberg,
2015. DOI: 10.1007/978-3-319-24174-6_16. 74

[BKP13] R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trap-
door: Threshold protocols for signatures and (H)IBE. In ACNS 13, vol.
7954 of LNCS, pp. 218–236. Springer, Heidelberg, 2013. DOI: 10.1007/
978-3-642-38980-1_14. 67, 74, 75

[BL07] D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves.
In ASIACRYPT 2007, vol. 4833 of LNCS, pp. 29–50. Springer, Heidelberg,
2007. DOI: 10.1007/978-3-540-76900-2_3. 23

[Ble00] D. Bleichenbacher. On the generation of one-time keys in DL signature
schemes. Presentation at IEEE P1363 working group meeting, 2000. 10, 11,
19, 20, 25, 60

[Ble05] D. Bleichenbacher. Experiments with DSA. Rump session at CRYPTO
2005, available from https://www.iacr.org/conferences/crypto2005/r/
3.pdf. 11, 19, 20, 37

[BLS19] J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In CRYPTO 2019, Part I, vol.
11692 of LNCS, pp. 176–202. Springer, Heidelberg, 2019. DOI: 10.1007/
978-3-030-26948-7_7. 74

[Blu86] M. Blum. How to prove a theorem so no one can claim it. In Proceedings of
the International Congress of Mathematicians, pp. 1444–1451, 1986. 1

[BN06] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM CCS 2006, pp. 390–399. ACM Press,
2006. DOI: 10.1145/1180405.1180453. 68, 69, 73, 75, 82, 84, 90, 100

[BN20] C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In
PKC 2020, Part I, vol. 12110 of LNCS, pp. 495–526. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-45374-9_17. 107, 111

[BP02] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In
CRYPTO 2002, vol. 2442 of LNCS, pp. 162–177. Springer, Heidelberg, 2002.
DOI: 10.1007/3-540-45708-9_11. 5

[BP16] A. Barenghi and G. Pelosi. A note on fault attacks against deterministic
signature schemes. In IWSEC 16, vol. 9836 of LNCS, pp. 182–192. Springer,
Heidelberg, 2016. DOI: 10.1007/978-3-319-44524-3_11. 11, 41, 43, 49

https://dx.doi.org/10.1007/3-540-39200-9_31
https://dx.doi.org/10.1007/3-540-39200-9_31
https://dx.doi.org/10.1007/978-3-319-24174-6_16
https://dx.doi.org/10.1007/978-3-642-38980-1_14
https://dx.doi.org/10.1007/978-3-642-38980-1_14
https://dx.doi.org/10.1007/978-3-540-76900-2_3
https://www.iacr.org/conferences/crypto2005/r/3.pdf
https://www.iacr.org/conferences/crypto2005/r/3.pdf
https://dx.doi.org/10.1007/978-3-030-26948-7_7
https://dx.doi.org/10.1007/978-3-030-26948-7_7
https://dx.doi.org/10.1145/1180405.1180453
https://dx.doi.org/10.1007/978-3-030-45374-9_17
https://dx.doi.org/10.1007/3-540-45708-9_11
https://dx.doi.org/10.1007/978-3-319-44524-3_11

140 BIBLIOGRAPHY

[BP18] L. G. Bruinderink and P. Pessl. Differential fault attacks on deterministic
lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/7267. 11, 41, 42

[BPS16] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures,
tightly: A framework and generic transforms. In ASIACRYPT 2016, Part II,
vol. 10032 of LNCS, pp. 435–464. Springer, Heidelberg, 2016. DOI: 10.1007/
978-3-662-53890-6_15. 43, 44, 50, 51, 56

[BPS17] A. Boldyreva, C. Patton, and T. Shrimpton. Hedging public-key encryption
in the real world. In CRYPTO 2017, Part III, vol. 10403 of LNCS, pp. 462–
494. Springer, Heidelberg, 2017. DOI: 10.1007/978-3-319-63697-9_16.
44

[BPW12] D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls
of the Fiat-Shamir heuristic and applications to Helios. In ASIACRYPT 2012,
vol. 7658 of LNCS, pp. 626–643. Springer, Heidelberg, 2012. DOI: 10.1007/
978-3-642-34961-4_38. 6

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pp. 62–73. ACM Press, 1993.
DOI: 10.1145/168588.168596. 8

[BR18] M. Brengel and C. Rossow. Identifying key leakage of bitcoin users. In RAID,
vol. 11050 of Lecture Notes in Computer Science, pp. 623–643. Springer,
2018. 41

[BR21] K. Boudgoust and A. Roux-Langlois. Compressed linear aggregate signatures
based on module lattices. Cryptology ePrint Archive, Report 2021/263,
https://eprint.iacr.org/2021/263. 74

[BS13] S. Bettaieb and J. Schrek. Improved lattice-based threshold ring signature
scheme. In Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, pp. 34–51. Springer, Heidelberg, 2013. DOI: 10.1007/
978-3-642-38616-9_3. 74

[BT11] B. B. Brumley and N. Tuveri. Remote timing attacks are still practical. In
ESORICS 2011, vol. 6879 of LNCS, pp. 355–371. Springer, Heidelberg, 2011.
DOI: 10.1007/978-3-642-23822-2_20. 25, 29

[BT16] M. Bellare and B. Tackmann. Nonce-based cryptography: Retaining security
when randomness fails. In EUROCRYPT 2016, Part I, vol. 9665 of LNCS, pp.
729–757. Springer, Heidelberg, 2016. DOI: 10.1007/978-3-662-49890-3_
28. 43, 44, 50, 51

[BTT22] C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In CRYPTO 2022, LNCS. Springer,
To appear. 15, 16

[BV96] D. Boneh and R. Venkatesan. Hardness of computing the most significant
bits of secret keys in Diffie-Hellman and related schemes. In CRYPTO’96,

https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://dx.doi.org/10.1007/978-3-662-53890-6_15
https://dx.doi.org/10.1007/978-3-662-53890-6_15
https://dx.doi.org/10.1007/978-3-319-63697-9_16
https://dx.doi.org/10.1007/978-3-642-34961-4_38
https://dx.doi.org/10.1007/978-3-642-34961-4_38
https://dx.doi.org/10.1145/168588.168596
https://eprint.iacr.org/2021/263
https://dx.doi.org/10.1007/978-3-642-38616-9_3
https://dx.doi.org/10.1007/978-3-642-38616-9_3
https://dx.doi.org/10.1007/978-3-642-23822-2_20
https://dx.doi.org/10.1007/978-3-662-49890-3_28
https://dx.doi.org/10.1007/978-3-662-49890-3_28

BIBLIOGRAPHY 141

vol. 1109 of LNCS, pp. 129–142. Springer, Heidelberg, 1996. DOI: 10.1007/
3-540-68697-5_11. 11, 19, 24, 25, 60

[BvSY14] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “ooh aah... just a
little bit”: A small amount of side channel can go a long way. In CHES 2014,
vol. 8731 of LNCS, pp. 75–92. Springer, Heidelberg, 2014. DOI: 10.1007/
978-3-662-44709-3_5. 25

[CAGB20] A. Cabrera Aldaya, C. P. García, and B. B. Brumley. From A to Z: projective
coordinates leakage in the wild. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(3):428–453, 2020. DOI: 10.13154/tches.v2020.i3.428-453,
https://doi.org/10.13154/tches.v2020.i3.428-453. 40

[CCD+17] K. Cohn-Gordon, C. J. F. Cremers, B. Dowling, L. Garratt, and D. Stebila.
A formal security analysis of the signal messaging protocol. In EuroS&P, pp.
451–466. IEEE, 2017. 42

[CCFG16] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo. BeleniosRF: A
non-interactive receipt-free electronic voting scheme. In ACM CCS 2016, pp.
1614–1625. ACM Press, 2016. DOI: 10.1145/2976749.2978337. 106

[CCH+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D.
Rothblum, and D. Wichs. Fiat-Shamir: from practice to theory. In 51st ACM
STOC, pp. 1082–1090. ACM Press, 2019. DOI: 10.1145/3313276.3316380.
8

[CCL+19] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations.
In CRYPTO 2019, Part III, vol. 11694 of LNCS, pp. 191–221. Springer,
Heidelberg, 2019. DOI: 10.1007/978-3-030-26954-8_7. 67

[CCL+20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Bandwidth-efficient threshold EC-DSA. In PKC 2020, Part II, vol.
12111 of LNCS, pp. 266–296. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-45388-6_10. 67

[CCRR18] R. Canetti, Y. Chen, L. Reyzin, and R. D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In EURO-
CRYPT 2018, Part I, vol. 10820 of LNCS, pp. 91–122. Springer, Heidelberg,
2018. DOI: 10.1007/978-3-319-78381-9_4. 8

[CD00] J. Camenisch and I. Damgård. Verifiable encryption, group encryption,
and their applications to separable group signatures and signature sharing
schemes. In ASIACRYPT 2000, vol. 1976 of LNCS, pp. 331–345. Springer,
Heidelberg, 2000. DOI: 10.1007/3-540-44448-3_25. 13, 14, 15, 105, 106,
109, 110, 112, 114, 128, 130

[CDG+17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger,
D. Slamanig, and G. Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In ACM CCS 2017, pp. 1825–1842. ACM
Press, 2017. DOI: 10.1145/3133956.3133997. 108, 121

https://dx.doi.org/10.1007/3-540-68697-5_11
https://dx.doi.org/10.1007/3-540-68697-5_11
https://dx.doi.org/10.1007/978-3-662-44709-3_5
https://dx.doi.org/10.1007/978-3-662-44709-3_5
https://dx.doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.13154/tches.v2020.i3.428-453
https://dx.doi.org/10.1145/2976749.2978337
https://dx.doi.org/10.1145/3313276.3316380
https://dx.doi.org/10.1007/978-3-030-26954-8_7
https://dx.doi.org/10.1007/978-3-030-45388-6_10
https://dx.doi.org/10.1007/978-3-030-45388-6_10
https://dx.doi.org/10.1007/978-3-319-78381-9_4
https://dx.doi.org/10.1007/3-540-44448-3_25
https://dx.doi.org/10.1145/3133956.3133997

142 BIBLIOGRAPHY

[CDN15] R. Cramer, I. Damgård, and J. B. Nielsen. Secure Multi-
party Computation and Secret Sharing. Cambridge Univer-
sity Press, 2015, http://www.cambridge.org/de/academic/
subjects/computer-science/cryptography-cryptology-and-coding/
secure-multiparty-computation-and-secret-sharing?format=HB&
isbn=9781107043053. 2

[CDNO97] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In
CRYPTO’97, vol. 1294 of LNCS, pp. 90–104. Springer, Heidelberg, 1997.
DOI: 10.1007/BFb0052229. 112

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO’94, vol.
839 of LNCS, pp. 174–187. Springer, Heidelberg, 1994. DOI: 10.1007/
3-540-48658-5_19. 3, 6

[CF85] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In 26th FOCS, pp. 372–382.
IEEE Computer Society Press, 1985. DOI: 10.1109/SFCS.1985.2. 106

[CFF+20] M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar: a
toolbox for more efficient universal and updatable zkSNARKs and commit-
and-prove extensions. Cryptology ePrint Archive, Report 2020/1069, https:
//eprint.iacr.org/2020/1069. 115

[CFF+21] M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar:
A toolbox for more efficient universal and updatable zksnarks and commit-
and-prove extensions. In ASIACRYPT 2021, vol. 13092 of LNCS, pp. 3–33.
Springer, 2021. DOI: 10.1007/978-3-030-92078-4_1, https://doi.org/
10.1007/978-3-030-92078-4_1. 13

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. In 28th ACM STOC, pp. 639–648. ACM Press, 1996.
DOI: 10.1145/237814.238015. 112

[CFQ19] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular design
and composition of succinct zero-knowledge proofs. In ACM CCS 2019, pp.
2075–2092. ACM Press, 2019. DOI: 10.1145/3319535.3339820. 13, 110

[CGG+20] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In
ACM CCS 2020, pp. 1769–1787. ACM Press, 2020. DOI: 10.1145/3372297.
3423367. 67

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pp. 209–218. ACM
Press, 1998. DOI: 10.1145/276698.276741. 8

[CGM16] M. Chase, C. Ganesh, and P. Mohassel. Efficient zero-knowledge proof of
algebraic and non-algebraic statements with applications to privacy preserv-
ing credentials. In CRYPTO 2016, Part III, vol. 9816 of LNCS, pp. 499–530.
Springer, Heidelberg, 2016. DOI: 10.1007/978-3-662-53015-3_18. 13

http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://dx.doi.org/10.1007/BFb0052229
https://dx.doi.org/10.1007/3-540-48658-5_19
https://dx.doi.org/10.1007/3-540-48658-5_19
https://dx.doi.org/10.1109/SFCS.1985.2
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2020/1069
https://dx.doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://dx.doi.org/10.1145/237814.238015
https://dx.doi.org/10.1145/3319535.3339820
https://dx.doi.org/10.1145/3372297.3423367
https://dx.doi.org/10.1145/3372297.3423367
https://dx.doi.org/10.1145/276698.276741
https://dx.doi.org/10.1007/978-3-662-53015-3_18

BIBLIOGRAPHY 143

[Cha19] A. Chailloux. Quantum security of the Fiat-Shamir transform of commit
and open protocols. Cryptology ePrint Archive, Report 2019/699, https:
//eprint.iacr.org/2019/699. 48

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT 2010, vol. 6110 of LNCS, pp. 523–
552. Springer, Heidelberg, 2010. DOI: 10.1007/978-3-642-13190-5_27.
70, 74

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In EURO-
CRYPT 2020, Part I, vol. 12105 of LNCS, pp. 738–768. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-45721-1_26. 115

[CK16] R. Choi and K. Kim. Lattice-based multi-signature with linear homomor-
phism. In 2016 Symposium on Cryptography and Information Security (SCIS
2016), 2016. 74

[CL06] M. Chase and A. Lysyanskaya. On signatures of knowledge. In
CRYPTO 2006, vol. 4117 of LNCS, pp. 78–96. Springer, Heidelberg, 2006.
DOI: 10.1007/11818175_5. 112

[Cla07] C. Clavier. Secret external encodings do not prevent transient fault analysis.
In CHES 2007, vol. 4727 of LNCS, pp. 181–194. Springer, Heidelberg, 2007.
DOI: 10.1007/978-3-540-74735-2_13. 45, 51

[CLRS10] P. Cayrel, R. Lindner, M. Rückert, and R. Silva. A lattice-based threshold
ring signature scheme. In LATINCRYPT 2010, vol. 6212 of LNCS, pp.
255–272. Springer, 2010. DOI: 10.1007/978-3-642-14712-8_16, https:
//doi.org/10.1007/978-3-642-14712-8_16. 74

[CM09] J.-S. Coron and A. Mandal. PSS is secure against random fault attacks. In
ASIACRYPT 2009, vol. 5912 of LNCS, pp. 653–666. Springer, Heidelberg,
2009. DOI: 10.1007/978-3-642-10366-7_38. 44, 54

[Cor99] J.-S. Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In CHES’99, vol. 1717 of LNCS, pp. 292–302. Springer,
Heidelberg, 1999. DOI: 10.1007/3-540-48059-5_25. 40

[COSV17a] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Delayed-input
non-malleable zero knowledge and multi-party coin tossing in four rounds.
In TCC 2017, Part I, vol. 10677 of LNCS, pp. 711–742. Springer, Heidelberg,
2017. DOI: 10.1007/978-3-319-70500-2_24. 74

[COSV17b] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Four-round concur-
rent non-malleable commitments from one-way functions. In CRYPTO 2017,
Part II, vol. 10402 of LNCS, pp. 127–157. Springer, Heidelberg, 2017.
DOI: 10.1007/978-3-319-63715-0_5. 74

[CPS+16a] M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Im-
proved OR-composition of sigma-protocols. In TCC 2016-A, Part II, vol.

https://eprint.iacr.org/2019/699
https://eprint.iacr.org/2019/699
https://dx.doi.org/10.1007/978-3-642-13190-5_27
https://dx.doi.org/10.1007/978-3-030-45721-1_26
https://dx.doi.org/10.1007/11818175_5
https://dx.doi.org/10.1007/978-3-540-74735-2_13
https://dx.doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://dx.doi.org/10.1007/978-3-642-10366-7_38
https://dx.doi.org/10.1007/3-540-48059-5_25
https://dx.doi.org/10.1007/978-3-319-70500-2_24
https://dx.doi.org/10.1007/978-3-319-63715-0_5

144 BIBLIOGRAPHY

9563 of LNCS, pp. 112–141. Springer, Heidelberg, 2016. DOI: 10.1007/
978-3-662-49099-0_5. 6, 55, 60, 74

[CPS+16b] M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. On-
line/offline OR composition of sigma protocols. In EUROCRYPT 2016,
Part II, vol. 9666 of LNCS, pp. 63–92. Springer, Heidelberg, 2016. DOI: 10.
1007/978-3-662-49896-5_3. 6

[Cra96] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols.
PhD thesis, CWI, Amsterdam, https://ir.cwi.nl/pub/21438. 3

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In CRYPTO 2003, vol. 2729 of LNCS, pp. 126–144.
Springer, Heidelberg, 2003. DOI: 10.1007/978-3-540-45146-4_8. 13, 106,
110, 128, 132

[CS18] C. Costello and B. Smith. Montgomery curves and their arithmetic - the
case of large characteristic fields. Journal of Cryptographic Engineering,
8(3):227–240, 2018. DOI: 10.1007/s13389-017-0157-6. 23

[CS19] D. Cozzo and N. P. Smart. Sharing the LUOV: Threshold post-quantum
signatures. In 17th IMA International Conference on Cryptography and
Coding, vol. 11929 of LNCS, pp. 128–153. Springer, Heidelberg, 2019.
DOI: 10.1007/978-3-030-35199-1_7. 68

[Dam00] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string
model. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 418–430. Springer,
Heidelberg, 2000. DOI: 10.1007/3-540-45539-6_30. 73, 74

[Dam10] I. Damgård. On Σ-protocols. Lectures notes from Cryptologic Protocol
Theory, https://cs.au.dk/~ivan/Sigma.pdf. 3, 49

[DAN+18] L. De Meyer, V. Arribas, S. Nikova, V. Nikov, and V. Rijmen. M&M: Masks
and macs against physical attacks. IACR TCHES, 2019(1):25–50, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7333. 45

[DDE+18] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger, A. Moghimi,
and Y. Yarom. CacheQuote: Efficiently recovering long-term secrets of SGX
EPID via cache attacks. IACR TCHES, 2018(2):171–191, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/879. 10, 25

[DDE+20] J. Daemen, C. Dobraunig, M. Eichlseder, H. Gross, F. Mendel, and
R. Primas. Protecting against statistical ineffective fault attacks. IACR
TCHES, 2020(3):508–543, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8599. 45

[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures
and bimodal Gaussians. In CRYPTO 2013, Part I, vol. 8042 of LNCS, pp.
40–56. Springer, Heidelberg, 2013. DOI: 10.1007/978-3-642-40041-4_3.
74

https://dx.doi.org/10.1007/978-3-662-49099-0_5
https://dx.doi.org/10.1007/978-3-662-49099-0_5
https://dx.doi.org/10.1007/978-3-662-49896-5_3
https://dx.doi.org/10.1007/978-3-662-49896-5_3
https://ir.cwi.nl/pub/21438
https://dx.doi.org/10.1007/978-3-540-45146-4_8
https://dx.doi.org/10.1007/s13389-017-0157-6
https://dx.doi.org/10.1007/978-3-030-35199-1_7
https://dx.doi.org/10.1007/3-540-45539-6_30
https://cs.au.dk/~ivan/Sigma.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7333
https://tches.iacr.org/index.php/TCHES/article/view/879
https://tches.iacr.org/index.php/TCHES/article/view/879
https://tches.iacr.org/index.php/TCHES/article/view/8599
https://tches.iacr.org/index.php/TCHES/article/view/8599
https://dx.doi.org/10.1007/978-3-642-40041-4_3

BIBLIOGRAPHY 145

[dDOS19] C. de Saint Guilhem, L. De Meyer, E. Orsini, and N. P. Smart. BBQ: Using
AES in picnic signatures. In SAC 2019, vol. 11959 of LNCS, pp. 669–692.
Springer, Heidelberg, 2019. DOI: 10.1007/978-3-030-38471-5_27. 107

[DEF+19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and
I. Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE
Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society
Press, 2019. DOI: 10.1109/SP.2019.00050. 12, 68, 70, 86, 90, 92

[DEG+18] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard, F. Mendel, and R. Primas.
Statistical ineffective fault attacks on masked AES with fault countermea-
sures. In ASIACRYPT 2018, Part II, vol. 11273 of LNCS, pp. 315–342.
Springer, Heidelberg, 2018. DOI: 10.1007/978-3-030-03329-3_11. 45

[DEK+18] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Pri-
mas. SIFA: Exploiting ineffective fault inductions on symmetric cryptography.
IACR TCHES, 2018(3):547–572, 2018. https://tches.iacr.org/index.
php/TCHES/article/view/7286. 45, 51

[DFG13] Ö. Dagdelen, M. Fischlin, and T. Gagliardoni. The Fiat-Shamir transforma-
tion in a quantum world. In ASIACRYPT 2013, Part II, vol. 8270 of LNCS,
pp. 62–81. Springer, Heidelberg, 2013. DOI: 10.1007/978-3-642-42045-0_
4. 8

[DFM20] J. Don, S. Fehr, and C. Majenz. The measure-and-reprogram technique
2.0: Multi-round fiat-shamir and more. In CRYPTO 2020, Part III, vol.
12172 of LNCS, pp. 602–631. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-56877-1_21. 8

[DFMS19] J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In CRYPTO 2019,
Part II, vol. 11693 of LNCS, pp. 356–383. Springer, Heidelberg, 2019.
DOI: 10.1007/978-3-030-26951-7_13. 8

[DFMS21] J. Don, S. Fehr, C. Majenz, and C. Schaffner. Online-extractability in the
quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280,
https://eprint.iacr.org/2021/280. 8, 112, 119

[DFMS22] J. Don, S. Fehr, C. Majenz, and C. Schaffner. Efficient nizks and signatures
from commit-and-open protocols in the qrom. Cryptology ePrint Archive,
Report 2022/270, https://ia.cr/2022/270. 8

[DFMV17] I. Damgård, S. Faust, P. Mukherjee, and D. Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. Journal of Cryptology,
30(1):152–190, 2017. DOI: 10.1007/s00145-015-9218-0. 45, 54

[DGRW18] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking:
From invisible salamanders to encryptment. In CRYPTO 2018, Part I, vol.
10991 of LNCS, pp. 155–186. Springer, Heidelberg, 2018. DOI: 10.1007/
978-3-319-96884-1_6. 112

https://dx.doi.org/10.1007/978-3-030-38471-5_27
https://dx.doi.org/10.1109/SP.2019.00050
https://dx.doi.org/10.1007/978-3-030-03329-3_11
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://dx.doi.org/10.1007/978-3-642-42045-0_4
https://dx.doi.org/10.1007/978-3-642-42045-0_4
https://dx.doi.org/10.1007/978-3-030-56877-1_21
https://dx.doi.org/10.1007/978-3-030-56877-1_21
https://dx.doi.org/10.1007/978-3-030-26951-7_13
https://eprint.iacr.org/2021/280
https://ia.cr/2022/270
https://dx.doi.org/10.1007/s00145-015-9218-0
https://dx.doi.org/10.1007/978-3-319-96884-1_6
https://dx.doi.org/10.1007/978-3-319-96884-1_6

146 BIBLIOGRAPHY

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976. DOI: 10.1109/TIT.1976.1055638,
https://doi.org/10.1109/TIT.1976.1055638. 7

[DHH+15] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and
P. Schwabe. High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcon-
trollers. Des. Codes Cryptogr., 77(2-3):493–514, 2015. 40

[DHMP13] E. De Mulder, M. Hutter, M. E. Marson, and P. Pearson. Using Bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in
384-bit ECDSA. In CHES 2013, vol. 8086 of LNCS, pp. 435–452. Springer,
Heidelberg, 2013. DOI: 10.1007/978-3-642-40349-1_25. 19

[DHMP14] E. De Mulder, M. Hutter, M. E. Marson, and P. Pearson. Using Bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in
384-bit ECDSA: extended version. Journal of Cryptographic Engineering,
4(1):33–45, 2014. DOI: 10.1007/s13389-014-0072-z. 25, 26, 34, 35, 39

[DHSS20] Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar. Mmsat: A scheme for
multimessage multiuser signature aggregation. Cryptology ePrint Archive,
Report 2020/520, https://eprint.iacr.org/2020/520. 74

[Din19] I. Dinur. An algorithmic framework for the generalized birthday prob-
lem. Des. Codes Cryptogr., 87(8):1897–1926, 2019. DOI: 10.1007/
s10623-018-00594-6, https://doi.org/10.1007/s10623-018-00594-6.
27, 31, 34

[DJN+20] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Øster-
gaard. Fast threshold ECDSA with honest majority. In SCN 20, vol.
12238 of LNCS, pp. 382–400. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-57990-6_19. 67

[DKLs18] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security
and Privacy, pp. 980–997. IEEE Computer Society Press, 2018. DOI: 10.
1109/SP.2018.00036. 67

[DKLs19] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from
ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on
Security and Privacy, pp. 1051–1066. IEEE Computer Society Press, 2019.
DOI: 10.1109/SP.2019.00024. 67

[DLL+18] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. Crystals–dilithium: Digital signatures from module lat-
tices. 2018, https://repository.ubn.ru.nl/bitstream/handle/2066/
191703/191703.pdf. 69, 73, 76, 85, 87

[dLS18] R. del Pino, V. Lyubashevsky, and G. Seiler. Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In ACM CCS 2018,
pp. 574–591. ACM Press, 2018. DOI: 10.1145/3243734.3243852. 74

https://dx.doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/10.1007/978-3-642-40349-1_25
https://dx.doi.org/10.1007/s13389-014-0072-z
https://eprint.iacr.org/2020/520
https://dx.doi.org/10.1007/s10623-018-00594-6
https://dx.doi.org/10.1007/s10623-018-00594-6
https://doi.org/10.1007/s10623-018-00594-6
https://dx.doi.org/10.1007/978-3-030-57990-6_19
https://dx.doi.org/10.1007/978-3-030-57990-6_19
https://dx.doi.org/10.1109/SP.2018.00036
https://dx.doi.org/10.1109/SP.2018.00036
https://dx.doi.org/10.1109/SP.2019.00024
https://repository.ubn.ru.nl/bitstream/handle/2066/191703/191703.pdf
https://repository.ubn.ru.nl/bitstream/handle/2066/191703/191703.pdf
https://dx.doi.org/10.1145/3243734.3243852

BIBLIOGRAPHY 147

[DM14] L. Ducas and D. Micciancio. Improved short lattice signatures in the standard
model. In CRYPTO 2014, Part I, vol. 8616 of LNCS, pp. 335–352. Springer,
Heidelberg, 2014. DOI: 10.1007/978-3-662-44371-2_19. 70, 74

[DN00] I. Damgård and J. B. Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In CRYPTO 2000,
vol. 1880 of LNCS, pp. 432–450. Springer, Heidelberg, 2000. DOI: 10.1007/
3-540-44598-6_27. 112

[DOK+20] A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman.
Securing DNSSEC keys via threshold ECDSA from generic MPC. In ES-
ORICS 2020, Part II, vol. 12309 of LNCS, pp. 654–673. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-59013-0_32. 67

[dOT21] C. de Saint Guilhem, E. Orsini, and T. Tanguy. Limbo: Efficient zero-
knowledge MPCitH-based arguments. In ACM CCS 2021, pp. 3022–3036.
ACM Press, 2021. DOI: 10.1145/3460120.3484595. 107, 111, 115, 131

[DOTT20] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round
n-out-of-n and multi-signatures and trapdoor commitment from lattices.
Cryptology ePrint Archive, Report 2020/1110, Full version. Available at
https://eprint.iacr.org/2020/1110.pdf. 13, 69, 72, 73, 86, 100

[DOTT21] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-
out-of-n and multi-signatures and trapdoor commitment from lattices. In
PKC 2021, Part I, vol. 12710 of LNCS, pp. 99–130. Springer, Heidelberg,
2021. DOI: 10.1007/978-3-030-75245-3_5. 13

[DOTT22] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-
out-of-n and multi-signatures and trapdoor commitment from lattices. J.
Cryptol., 35(14), 2022. DOI: 10.1007/s00145-022-09425-3. 13

[DPW18] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. J.
ACM, 65(4):20:1–20:32, 2018. DOI: 10.1145/3178432, https://doi.org/
10.1145/3178432. 45

[DRS18] D. Derler, S. Ramacher, and D. Slamanig. Post-quantum zero-knowledge
proofs for accumulators with applications to ring signatures from symmetric-
key primitives. In Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pp. 419–440. Springer, Heidelberg, 2018. DOI: 10.
1007/978-3-319-79063-3_20. 132

[EEE20] M. F. Esgin, O. Ersoy, and Z. Erkin. Post-quantum adaptor signa-
tures and payment channel networks. In ESORICS 2020, Part II, vol.
12309 of LNCS, pp. 378–397. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-59013-0_19. 74

[EFG+22] T. Espitau, P. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi,
A. Wallet, and Y. Yu. Mitaka: A simpler, parallelizable, maskable vari-
ant of Falcon. In EUROCRYPT 2022, vol. 13277 of LNCS, pp. 222–253.

https://dx.doi.org/10.1007/978-3-662-44371-2_19
https://dx.doi.org/10.1007/3-540-44598-6_27
https://dx.doi.org/10.1007/3-540-44598-6_27
https://dx.doi.org/10.1007/978-3-030-59013-0_32
https://dx.doi.org/10.1145/3460120.3484595
https://eprint.iacr.org/2020/1110.pdf
https://dx.doi.org/10.1007/978-3-030-75245-3_5
https://dx.doi.org/10.1007/s00145-022-09425-3
https://dx.doi.org/10.1145/3178432
https://doi.org/10.1145/3178432
https://doi.org/10.1145/3178432
https://dx.doi.org/10.1007/978-3-319-79063-3_20
https://dx.doi.org/10.1007/978-3-319-79063-3_20
https://dx.doi.org/10.1007/978-3-030-59013-0_19
https://dx.doi.org/10.1007/978-3-030-59013-0_19

148 BIBLIOGRAPHY

Springer, 2022. DOI: 10.1007/978-3-031-07082-2_9, Full version avail-
able at https://eprint.iacr.org/2021/1486.pdf. Preliminary version
appeared at the 3rd NIST PQC Standardization Conference. 15, 16

[EG21] Electionguard specification, available at https://www.electionguard.
vote/. 106

[ES16] R. El Bansarkhani and J. Sturm. An efficient lattice-based multisignature
scheme with applications to bitcoins. In CANS 16, vol. 10052 of LNCS, pp.
140–155. Springer, Heidelberg, 2016. DOI: 10.1007/978-3-319-48965-0_9.
68, 69, 73, 74

[ESLL19] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications.
In CRYPTO 2019, Part I, vol. 11692 of LNCS, pp. 115–146. Springer,
Heidelberg, 2019. DOI: 10.1007/978-3-030-26948-7_5. 74, 77

[ESS+19] M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu. Short lattice-
based one-out-of-many proofs and applications to ring signatures. In ACNS
19, vol. 11464 of LNCS, pp. 67–88. Springer, Heidelberg, 2019. DOI: 10.
1007/978-3-030-21568-2_4. 69, 74

[fai10] fail0verflow. Console hacking 2010 – PS3 epic fail. 27th Chaos Communica-
tions Congress, 2010. 41

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal
of Cryptology, 1(2):77–94, 1988. DOI: 10.1007/BF02351717. 3, 4

[FG20] M. Fischlin and F. Günther. Modeling memory faults in signature and
authenticated encryption schemes. In CT-RSA 2020, vol. 12006 of LNCS, pp.
56–84. Springer, Heidelberg, 2020. DOI: 10.1007/978-3-030-40186-3_4.
45

[FGMN16] P. Fouque, S. Guilley, C. Murdica, and D. Naccache. Safe-errors on
SPA protected implementations with the atomicity technique. In The
New Codebreakers - Essays Dedicated to David Kahn on the Occasion
of His 85th Birthday, vol. 9100 of Lecture Notes in Computer Science,
pp. 479–493. Springer, 2016. DOI: 10.1007/978-3-662-49301-4_30,
https://doi.org/10.1007/978-3-662-49301-4_30. 31

[FH19] M. Fukumitsu and S. Hasegawa. A tightly-secure lattice-based multisignature.
In APKC@AsiaCCS 2019, pp. 3–11. ACM, 2019. DOI: 10.1145/3327958.
3329542, https://doi.org/10.1145/3327958.3329542. 68, 69, 74

[FH20] M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisig-
nature scheme in quantum random oracle model. In ProvSec 2020, vol.
12505 of LNCS, pp. 45–64. Springer, Heidelberg, 2020. DOI: 10.1007/
978-3-030-62576-4_3. 68, 69, 74, 75, 78

[FHJ20] M. Fischlin, P. Harasser, and C. Janson. Signatures from sequential-OR
proofs. In EUROCRYPT 2020, Part III, vol. 12107 of LNCS, pp. 212–244.
Springer, Heidelberg, 2020. DOI: 10.1007/978-3-030-45727-3_8. 6

https://dx.doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2021/1486.pdf
https://www.electionguard.vote/
https://www.electionguard.vote/
https://dx.doi.org/10.1007/978-3-319-48965-0_9
https://dx.doi.org/10.1007/978-3-030-26948-7_5
https://dx.doi.org/10.1007/978-3-030-21568-2_4
https://dx.doi.org/10.1007/978-3-030-21568-2_4
https://dx.doi.org/10.1007/BF02351717
https://dx.doi.org/10.1007/978-3-030-40186-3_4
https://dx.doi.org/10.1007/978-3-662-49301-4_30
https://doi.org/10.1007/978-3-662-49301-4_30
https://dx.doi.org/10.1145/3327958.3329542
https://dx.doi.org/10.1145/3327958.3329542
https://doi.org/10.1145/3327958.3329542
https://dx.doi.org/10.1007/978-3-030-62576-4_3
https://dx.doi.org/10.1007/978-3-030-62576-4_3
https://dx.doi.org/10.1007/978-3-030-45727-3_8

BIBLIOGRAPHY 149

[Fil11] J. Fildes. iPhone hacker publishes secret Sony PlayStation 3 key. BBC
News, accessed on April 10, 2022. Available at https://www.bbc.com/news/
technology-12116051. 10

[Fis05] M. Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In CRYPTO 2005, vol. 3621 of LNCS, pp. 152–168.
Springer, Heidelberg, 2005. DOI: 10.1007/11535218_10. 8, 112

[FJ05] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, special issue on “Program Generation,
Optimization, and Platform Adaptation”. 38

[FKMV12] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-
malleability of the Fiat-Shamir transform. In INDOCRYPT 2012, vol.
7668 of LNCS, pp. 60–79. Springer, Heidelberg, 2012. DOI: 10.1007/
978-3-642-34931-7_5. 8

[FNSV18] A. Faonio, J. B. Nielsen, M. Simkin, and D. Venturi. Continuously non-
malleable codes with split-state refresh. In ACNS 18, vol. 10892 of LNCS, pp.
121–139. Springer, Heidelberg, 2018. DOI: 10.1007/978-3-319-93387-0_7.
45

[FO99] E. Fujisaki and T. Okamoto. How to enhance the security of public-key
encryption at minimum cost. In PKC’99, vol. 1560 of LNCS, pp. 53–68.
Springer, Heidelberg, 1999. DOI: 10.1007/3-540-49162-7_5. 108, 119

[FO13] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, 2013. DOI: 10.
1007/s00145-011-9114-1. 108, 119

[FPV11] S. Faust, K. Pietrzak, and D. Venturi. Tamper-proof circuits: How to trade
leakage for tamper-resilience. In ICALP 2011, Part I, vol. 6755 of LNCS, pp.
391–402. Springer, Heidelberg, 2011. DOI: 10.1007/978-3-642-22006-7_
33. 44

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO’86, vol. 263 of LNCS, pp.
186–194. Springer, Heidelberg, 1987. DOI: 10.1007/3-540-47721-7_12. 4,
6, 42, 108, 109, 122, 128

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pp. 416–426. ACM Press, 1990. DOI: 10.
1145/100216.100272. 6

[FV16] A. Faonio and D. Venturi. Efficient public-key cryptography with bounded
leakage and tamper resilience. In ASIACRYPT 2016, Part I, vol. 10031
of LNCS, pp. 877–907. Springer, Heidelberg, 2016. DOI: 10.1007/
978-3-662-53887-6_32. 45

[FX16] E. Fujisaki and K. Xagawa. Public-key cryptosystems resilient to continuous
tampering and leakage of arbitrary functions. In ASIACRYPT 2016, Part I,

https://www.bbc.com/news/technology-12116051
https://www.bbc.com/news/technology-12116051
https://dx.doi.org/10.1007/11535218_10
https://dx.doi.org/10.1007/978-3-642-34931-7_5
https://dx.doi.org/10.1007/978-3-642-34931-7_5
https://dx.doi.org/10.1007/978-3-319-93387-0_7
https://dx.doi.org/10.1007/3-540-49162-7_5
https://dx.doi.org/10.1007/s00145-011-9114-1
https://dx.doi.org/10.1007/s00145-011-9114-1
https://dx.doi.org/10.1007/978-3-642-22006-7_33
https://dx.doi.org/10.1007/978-3-642-22006-7_33
https://dx.doi.org/10.1007/3-540-47721-7_12
https://dx.doi.org/10.1145/100216.100272
https://dx.doi.org/10.1145/100216.100272
https://dx.doi.org/10.1007/978-3-662-53887-6_32
https://dx.doi.org/10.1007/978-3-662-53887-6_32

150 BIBLIOGRAPHY

vol. 10031 of LNCS, pp. 908–938. Springer, Heidelberg, 2016. DOI: 10.1007/
978-3-662-53887-6_33. 45

[GB17] C. P. García and B. B. Brumley. Constant-time callees with variable-time
callers. In USENIX Security 2017, pp. 83–98. USENIX Association, 2017.
22, 25

[GBK11] D. Gullasch, E. Bangerter, and S. Krenn. Cache games - bringing access-
based cache attacks on AES to practice. In 2011 IEEE Symposium on
Security and Privacy, pp. 490–505. IEEE Computer Society Press, 2011.
DOI: 10.1109/SP.2011.22. 22

[GCZ16] S. Goldfeder, M. Chase, and G. Zaverucha. Efficient post-quantum zero-
knowledge and signatures. Cryptology ePrint Archive, Report 2016/1110,
https://eprint.iacr.org/2016/1110. 107

[GG18] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with
fast trustless setup. In ACM CCS 2018, pp. 1179–1194. ACM Press, 2018.
DOI: 10.1145/3243734.3243859. 67

[GGN16] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
ACNS 16, vol. 9696 of LNCS, pp. 156–174. Springer, Heidelberg, 2016.
DOI: 10.1007/978-3-319-39555-5_9. 67

[GGSW13] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and
its applications. In 45th ACM STOC, pp. 467–476. ACM Press, 2013.
DOI: 10.1145/2488608.2488667. 112

[GH03] Y. Gertner and A. Herzberg. Committing encryption and publicly-verifiable
signcryption. Cryptology ePrint Archive, Report 2003/254, https://eprint.
iacr.org/2003/254. 112, 113

[GHHM21] A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adap-
tive reprogramming in the QROM. In Advances in Cryptology - ASI-
ACRYPT 2021 - 27th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 6-10,
2021, Proceedings, Part I, vol. 13090 of Lecture Notes in Computer Sci-
ence, pp. 637–667. Springer, 2021. DOI: 10.1007/978-3-030-92062-3_22,
https://doi.org/10.1007/978-3-030-92062-3_22. 47

[GHM+21] K. Gjøsteen, T. Haines, J. Müller, P. Rønne, and T. Silde. Verifiable
decryption in the head. Cryptology ePrint Archive, Report 2021/558, https:
//eprint.iacr.org/2021/558. 111

[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryptology,
20(1):51–83, 2007. DOI: 10.1007/s00145-006-0347-3. 68

[GJKW07] E.-J. Goh, S. Jarecki, J. Katz, and N. Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology,
20(4):493–514, 2007. DOI: 10.1007/s00145-007-0549-3. 6

https://dx.doi.org/10.1007/978-3-662-53887-6_33
https://dx.doi.org/10.1007/978-3-662-53887-6_33
https://dx.doi.org/10.1109/SP.2011.22
https://eprint.iacr.org/2016/1110
https://dx.doi.org/10.1145/3243734.3243859
https://dx.doi.org/10.1007/978-3-319-39555-5_9
https://dx.doi.org/10.1145/2488608.2488667
https://eprint.iacr.org/2003/254
https://eprint.iacr.org/2003/254
https://dx.doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://eprint.iacr.org/2021/558
https://eprint.iacr.org/2021/558
https://dx.doi.org/10.1007/s00145-006-0347-3
https://dx.doi.org/10.1007/s00145-007-0549-3

BIBLIOGRAPHY 151

[GK96] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge
proof systems. SIAM J. Comput., 25(1):169–192, 1996. DOI: 10.1137/
S0097539791220688, https://doi.org/10.1137/S0097539791220688. 6

[GK03] S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th FOCS, pp. 102–115. IEEE Computer Society Press, 2003.
DOI: 10.1109/SFCS.2003.1238185. 8

[GK22] Google Cloud Key Management Service Documentation: Key purposes and
algorithms, https://cloud.google.com/kms/docs/algorithms. 105, 106

[GKMN21] F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko. Threshold
Schnorr with stateless deterministic signing from standard assumptions.
In CRYPTO 2021, Part I, vol. 12825 of LNCS, pp. 127–156, Virtual Event,
2021. Springer, Heidelberg. DOI: 10.1007/978-3-030-84242-0_6. 12

[GKSS20] A. Gagol, J. Kula, D. Straszak, and M. Swietek. Threshold ecdsa for
decentralized asset custody. Cryptology ePrint Archive, Report 2020/498,
https://eprint.iacr.org/2020/498. 67

[GLM+04] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against
hardware tampering. In TCC 2004, vol. 2951 of LNCS, pp. 258–277. Springer,
Heidelberg, 2004. DOI: 10.1007/978-3-540-24638-1_15. 44, 53

[GLP12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In CHES 2012,
vol. 7428 of LNCS, pp. 530–547. Springer, Heidelberg, 2012. DOI: 10.1007/
978-3-642-33027-8_31. 68, 74

[GLR17] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing
authenticated encryption. In CRYPTO 2017, Part III, vol. 10403 of LNCS, pp.
66–97. Springer, Heidelberg, 2017. DOI: 10.1007/978-3-319-63697-9_3.
112

[GM18] N. Genise and D. Micciancio. Faster Gaussian sampling for trapdoor
lattices with arbitrary modulus. In EUROCRYPT 2018, Part I, vol.
10820 of LNCS, pp. 174–203. Springer, Heidelberg, 2018. DOI: 10.1007/
978-3-319-78381-9_7. 104

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: Faster zero-knowledge
for Boolean circuits. In USENIX Security 2016, pp. 1069–1083. USENIX
Association, 2016. 107, 108, 121

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th ACM STOC, pp.
291–304. ACM Press, 1985. DOI: 10.1145/22145.22178. 1, 3

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988. DOI: 10.1137/0217017, https://doi.org/10.1137/0217017. 7

https://dx.doi.org/10.1137/S0097539791220688
https://dx.doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://dx.doi.org/10.1109/SFCS.2003.1238185
https://cloud.google.com/kms/docs/algorithms
https://dx.doi.org/10.1007/978-3-030-84242-0_6
https://eprint.iacr.org/2020/498
https://dx.doi.org/10.1007/978-3-540-24638-1_15
https://dx.doi.org/10.1007/978-3-642-33027-8_31
https://dx.doi.org/10.1007/978-3-642-33027-8_31
https://dx.doi.org/10.1007/978-3-319-63697-9_3
https://dx.doi.org/10.1007/978-3-319-78381-9_7
https://dx.doi.org/10.1007/978-3-319-78381-9_7
https://dx.doi.org/10.1145/22145.22178
https://dx.doi.org/10.1137/0217017
https://doi.org/10.1137/0217017

152 BIBLIOGRAPHY

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989. DOI: 10.
1137/0218012, https://doi.org/10.1137/0218012. 1

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended
abstract). In 27th FOCS, pp. 174–187. IEEE Computer Society Press, 1986.
DOI: 10.1109/SFCS.1986.47. 1, 48

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In
CRYPTO’86, vol. 263 of LNCS, pp. 171–185. Springer, Heidelberg, 1987.
DOI: 10.1007/3-540-47721-7_11. 106

[Gol01] O. Goldreich. The Foundations of Cryptography - Volume 1: Ba-
sic Techniques. Cambridge University Press, 2001. DOI: 10.1017/
CBO9780511546891, http://www.wisdom.weizmann.ac.il/%7Eoded/
foc-vol1.html. 2, 47

[GOP+22] C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat-
Shamir Bulletproofs are Non-Malleable (in the Algebraic Group Model).
In EUROCRYPT 2022, vol. 13276 of LNCS, pp. 397–426. Springer, 2022.
DOI: 10.1007/978-3-031-07085-3_14, Full version available at https:
//eprint.iacr.org/2021/1393.pdf. 15, 16

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for NP. In EUROCRYPT 2006, vol. 4004 of LNCS, pp. 339–358. Springer,
Heidelberg, 2006. DOI: 10.1007/11761679_21. 106

[GPP+16] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom. ECDSA
key extraction from mobile devices via nonintrusive physical side channels. In
ACM CCS 2016, pp. 1626–1638. ACM Press, 2016. DOI: 10.1145/2976749.
2978353. 25

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In 40th ACM STOC, pp. 197–206.
ACM Press, 2008. DOI: 10.1145/1374376.1374407. 67, 74, 75

[GQ88] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and memory.
In EUROCRYPT’88, vol. 330 of LNCS, pp. 123–128. Springer, Heidelberg,
1988. DOI: 10.1007/3-540-45961-8_11. 4

[GRBG18] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation leak-aside buffer:
Defeating cache side-channel protections with TLB attacks. In USENIX
Security 2018, pp. 955–972. USENIX Association, 2018. 22

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT 2016, Part II, vol. 9666 of LNCS, pp. 305–326. Springer,
Heidelberg, 2016. DOI: 10.1007/978-3-662-49896-5_11. 106

https://dx.doi.org/10.1137/0218012
https://dx.doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://dx.doi.org/10.1109/SFCS.1986.47
https://dx.doi.org/10.1007/3-540-47721-7_11
https://dx.doi.org/10.1017/CBO9780511546891
https://dx.doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol1.html
https://dx.doi.org/10.1007/978-3-031-07085-3_14
https://eprint.iacr.org/2021/1393.pdf
https://eprint.iacr.org/2021/1393.pdf
https://dx.doi.org/10.1007/11761679_21
https://dx.doi.org/10.1145/2976749.2978353
https://dx.doi.org/10.1145/2976749.2978353
https://dx.doi.org/10.1145/1374376.1374407
https://dx.doi.org/10.1007/3-540-45961-8_11
https://dx.doi.org/10.1007/978-3-662-49896-5_11

BIBLIOGRAPHY 153

[GS86] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive
proof systems. In 18th ACM STOC, pp. 59–68. ACM Press, 1986. DOI: 10.
1145/12130.12137. 2

[GSM15] D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Automating
attacks on inclusive last-level caches. In USENIX Security 2015, pp. 897–912.
USENIX Association, 2015. 22

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO 2013, Part I, vol. 8042 of LNCS, pp. 75–92. Springer, Heidelberg,
2013. DOI: 10.1007/978-3-642-40041-4_5. 70, 74

[GVW15] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic
signatures from standard lattices. In 47th ACM STOC, pp. 469–477. ACM
Press, 2015. DOI: 10.1145/2746539.2746576. 70, 74

[GYCH18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural tim-
ing attacks and countermeasures on contemporary hardware. Journal of Cryp-
tographic Engineering, 8(1):1–27, 2018. DOI: 10.1007/s13389-016-0141-6.
22

[HGS01] N. Howgrave-Graham and N. Smart. Lattice attacks on digital signature
schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001. 10, 19, 25

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In TCC 2017, Part I, vol. 10677 of LNCS, pp. 341–
371. Springer, Heidelberg, 2017. DOI: 10.1007/978-3-319-70500-2_12.
108, 119

[HJ10] N. Howgrave-Graham and A. Joux. New generic algorithms for hard knap-
sacks. In EUROCRYPT 2010, vol. 6110 of LNCS, pp. 235–256. Springer,
Heidelberg, 2010. DOI: 10.1007/978-3-642-13190-5_12. 27, 30, 72

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Tech-
niques and Constructions. Information Security and Cryptography. Springer,
2010. DOI: 10.1007/978-3-642-14303-8, https://doi.org/10.1007/
978-3-642-14303-8. 2, 47

[HLC+18] Z. Huang, J. Lai, W. Chen, M. H. Au, Z. Peng, and J. Li. Hedged nonce-
based public-key encryption: Adaptive security under randomness failures.
In PKC 2018, Part I, vol. 10769 of LNCS, pp. 253–279. Springer, Heidelberg,
2018. DOI: 10.1007/978-3-319-76578-5_9. 44

[HLR21] J. Holmgren, A. Lombardi, and R. D. Rothblum. Fiat-shamir via
list-recoverable codes (or: parallel repetition of GMW is not zero-
knowledge). In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pp. 750–
760. ACM, 2021. DOI: 10.1145/3406325.3451116, https://doi.org/10.
1145/3406325.3451116. 112, 119

https://dx.doi.org/10.1145/12130.12137
https://dx.doi.org/10.1145/12130.12137
https://dx.doi.org/10.1007/978-3-642-40041-4_5
https://dx.doi.org/10.1145/2746539.2746576
https://dx.doi.org/10.1007/s13389-016-0141-6
https://dx.doi.org/10.1007/978-3-319-70500-2_12
https://dx.doi.org/10.1007/978-3-642-13190-5_12
https://dx.doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
https://dx.doi.org/10.1007/978-3-319-76578-5_9
https://dx.doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116

154 BIBLIOGRAPHY

[IAIES14] G. Irazoqui Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a
minute! A fast, cross-VM attack on AES. In RAID, pp. 299–319, 2014. 22

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from
secure multiparty computation. In 39th ACM STOC, pp. 21–30. ACM Press,
2007. DOI: 10.1145/1250790.1250794. 15, 46, 106, 107, 108, 115, 116, 117,
119

[IPSW06] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits II:
Keeping secrets in tamperable circuits. In EUROCRYPT 2006, vol. 4004 of
LNCS, pp. 308–327. Springer, Heidelberg, 2006. DOI: 10.1007/11761679_
19. 44

[JSSS20] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The curse of
ECDSA nonces. IACR TCHES, 2020(4):281–308, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8684. 10

[JT12] M. Joye and M. Tunstall. Fault analysis in cryptography, vol. 147 of Infor-
mation Security and Cryptography. Springer, 2012. 42

[Kat21] S. Katsumata. A new simple technique to bootstrap various lattice zero-
knowledge proofs to QROM secure NIZKs. In CRYPTO 2021, Part II, vol.
12826 of LNCS, pp. 580–610, Virtual Event, 2021. Springer, Heidelberg.
DOI: 10.1007/978-3-030-84245-1_20. 8, 112, 119

[KD20] M. Kansal and R. Dutta. Round optimal secure multisignature schemes
from lattice with public key aggregation and signature compression. In
AFRICACRYPT 20, vol. 12174 of LNCS, pp. 281–300. Springer, Heidelberg,
2020. DOI: 10.1007/978-3-030-51938-4_14. 74

[KDK+14] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu. Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ISCA, pp. 361–372. IEEE Computer
Society, 2014. 42

[KG20] C. Komlo and I. Goldberg. FROST: flexible round-optimized schnorr thresh-
old signatures. In Selected Areas in Cryptography - SAC 2020 - 27th Inter-
national Conference, Halifax, NS, Canada (Virtual Event), October 21-23,
2020, Revised Selected Papers, vol. 12804 of Lecture Notes in Computer
Science, pp. 34–65. Springer, 2020. DOI: 10.1007/978-3-030-81652-0_2,
https://doi.org/10.1007/978-3-030-81652-0_2. 12, 68, 70

[KKM08] A. H. Koblitz, N. Koblitz, and A. Menezes. Elliptic curve cryptography: The
serpentine course of a paradigm shift. Cryptology ePrint Archive, Report
2008/390, https://eprint.iacr.org/2008/390. 23

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In ACM CCS 2018, pp.
525–537. ACM Press, 2018. DOI: 10.1145/3243734.3243805. 46, 107, 108,
112, 119, 121, 129, 132

https://dx.doi.org/10.1145/1250790.1250794
https://dx.doi.org/10.1007/11761679_19
https://dx.doi.org/10.1007/11761679_19
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://dx.doi.org/10.1007/978-3-030-84245-1_20
https://dx.doi.org/10.1007/978-3-030-51938-4_14
https://dx.doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2008/390
https://dx.doi.org/10.1145/3243734.3243805

BIBLIOGRAPHY 155

[KLP17] E. Kiltz, J. Loss, and J. Pan. Tightly-secure signatures from five-move
identification protocols. In ASIACRYPT 2017, Part III, vol. 10626 of LNCS,
pp. 68–94. Springer, Heidelberg, 2017. DOI: 10.1007/978-3-319-70700-6_
3. 6

[KLS18] E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of
Fiat-Shamir signatures in the quantum random-oracle model. In EURO-
CRYPT 2018, Part III, vol. 10822 of LNCS, pp. 552–586. Springer, Heidel-
berg, 2018. DOI: 10.1007/978-3-319-78372-7_18. 6, 8, 46, 49, 54, 75, 78,
79

[KM15] N. Koblitz and A. J. Menezes. The random oracle model: a twenty-year
retrospective. Des. Codes Cryptogr., 77(2-3):587–610, 2015. DOI: 10.1007/
s10623-015-0094-2, https://doi.org/10.1007/s10623-015-0094-2. 8

[KMO90] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledge
proofs (extended abstract). In CRYPTO’89, vol. 435 of LNCS, pp. 545–546.
Springer, Heidelberg, 1990. DOI: 10.1007/0-387-34805-0_47. 48

[KMOS21] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits. Refresh when you
wake up: Proactive threshold wallets with offline devices. In 2021 IEEE
Symposium on Security and Privacy, pp. 608–625. IEEE Computer Society
Press, 2021. DOI: 10.1109/SP40001.2021.00067. 12

[KMP16] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from
identification schemes. In CRYPTO 2016, Part II, vol. 9815 of LNCS, pp.
33–61. Springer, Heidelberg, 2016. DOI: 10.1007/978-3-662-53008-5_2.
4, 5, 6, 8, 49, 56, 58, 62, 122

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In CRYPTO’96, vol. 1109 of LNCS, pp. 104–113.
Springer, Heidelberg, 1996. DOI: 10.1007/3-540-68697-5_9. 10

[KSV13] D. Karaklajic, J. Schmidt, and I. Verbauwhede. Hardware designer’s
guide to fault attacks. IEEE Trans. VLSI Syst., 21(12):2295–2306,
2013. DOI: 10.1109/TVLSI.2012.2231707, https://doi.org/10.1109/
TVLSI.2012.2231707. 42

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM CCS 2003, pp. 155–164. ACM Press, 2003.
DOI: 10.1145/948109.948132. 6

[LCKO19] J. Lee, J. Choi, J. Kim, and H. Oh. SAVER: Snark-friendly, additively-
homomorphic, and verifiable encryption and decryption with rerandomization.
Cryptology ePrint Archive, Report 2019/1270, https://eprint.iacr.org/
2019/1270. 13, 106, 110

[LD99] J. C. López-Hernández and R. Dahab. Fast multiplication on elliptic curves
over GF(2m) without precomputation. In CHES’99, vol. 1717 of LNCS, pp.
316–327. Springer, Heidelberg, 1999. DOI: 10.1007/3-540-48059-5_27. 28

https://dx.doi.org/10.1007/978-3-319-70700-6_3
https://dx.doi.org/10.1007/978-3-319-70700-6_3
https://dx.doi.org/10.1007/978-3-319-78372-7_18
https://dx.doi.org/10.1007/s10623-015-0094-2
https://dx.doi.org/10.1007/s10623-015-0094-2
https://doi.org/10.1007/s10623-015-0094-2
https://dx.doi.org/10.1007/0-387-34805-0_47
https://dx.doi.org/10.1109/SP40001.2021.00067
https://dx.doi.org/10.1007/978-3-662-53008-5_2
https://dx.doi.org/10.1007/3-540-68697-5_9
https://dx.doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707
https://dx.doi.org/10.1145/948109.948132
https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2019/1270
https://dx.doi.org/10.1007/3-540-48059-5_27

156 BIBLIOGRAPHY

[LDK+19] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, and
D. Stehlé. CRYSTALS-DILITHIUM. Technical report, National Institute of
Standards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 11, 68, 73, 74

[LFKN90] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. In 31st FOCS, pp. 2–10. IEEE Computer Society
Press, 1990. DOI: 10.1109/FSCS.1990.89518. 2

[Lin17a] Y. Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017, Part II,
vol. 10402 of LNCS, pp. 613–644. Springer, Heidelberg, 2017. DOI: 10.1007/
978-3-319-63715-0_21. 67, 81

[Lin17b] Y. Lindell. How to simulate it - A tutorial on the simulation proof technique.
In Tutorials on the Foundations of Cryptography, pp. 277–346. Springer
International Publishing, 2017. DOI: 10.1007/978-3-319-57048-8_6,
https://doi.org/10.1007/978-3-319-57048-8_6. 2

[LL12] F.-H. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-
state model. In CRYPTO 2012, vol. 7417 of LNCS, pp. 517–532. Springer,
Heidelberg, 2012. DOI: 10.1007/978-3-642-32009-5_30. 45

[LN13] M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In
CT-RSA 2013, vol. 7779 of LNCS, pp. 293–309. Springer, Heidelberg, 2013.
DOI: 10.1007/978-3-642-36095-4_19. 20

[LN17] V. Lyubashevsky and G. Neven. One-shot verifiable encryption from lattices.
In EUROCRYPT 2017, Part I, vol. 10210 of LNCS, pp. 293–323. Springer,
Heidelberg, 2017. DOI: 10.1007/978-3-319-56620-7_11. 13, 106, 110,
111

[LN18] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
ACM CCS 2018, pp. 1837–1854. ACM Press, 2018. DOI: 10.1145/3243734.
3243788. 67

[LNTW19] B. Libert, K. Nguyen, B. H. M. Tan, and H. Wang. Zero-knowledge ele-
mentary databases with more expressive queries. In PKC 2019, Part I, vol.
11442 of LNCS, pp. 255–285. Springer, Heidelberg, 2019. DOI: 10.1007/
978-3-030-17253-4_9. 70, 74

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryp-
tography. In EUROCRYPT 2013, vol. 7881 of LNCS, pp. 35–54. Springer,
Heidelberg, 2013. DOI: 10.1007/978-3-642-38348-9_3. 103

[LSG+17] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside SGX enclaves with branch shadowing. In
USENIX Security 2017, pp. 557–574. USENIX Association, 2017. 22

[LTT20] Z.-Y. Liu, Y.-F. Tseng, and R. Tso. Cryptanalysis of a round optimal lattice-
based multisignature scheme. Cryptology ePrint Archive, Report 2020/1172,
https://eprint.iacr.org/2020/1172. 74

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://dx.doi.org/10.1109/FSCS.1990.89518
https://dx.doi.org/10.1007/978-3-319-63715-0_21
https://dx.doi.org/10.1007/978-3-319-63715-0_21
https://dx.doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://dx.doi.org/10.1007/978-3-642-32009-5_30
https://dx.doi.org/10.1007/978-3-642-36095-4_19
https://dx.doi.org/10.1007/978-3-319-56620-7_11
https://dx.doi.org/10.1145/3243734.3243788
https://dx.doi.org/10.1145/3243734.3243788
https://dx.doi.org/10.1007/978-3-030-17253-4_9
https://dx.doi.org/10.1007/978-3-030-17253-4_9
https://dx.doi.org/10.1007/978-3-642-38348-9_3
https://eprint.iacr.org/2020/1172

BIBLIOGRAPHY 157

[LYG+15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-
channel attacks are practical. In 2015 IEEE Symposium on Security and
Privacy, pp. 605–622. IEEE Computer Society Press, 2015. DOI: 10.1109/
SP.2015.43. 22

[Lyu08] V. Lyubashevsky. Lattice-based identification schemes secure under active
attacks. In PKC 2008, vol. 4939 of LNCS, pp. 162–179. Springer, Heidelberg,
2008. DOI: 10.1007/978-3-540-78440-1_10. 6

[Lyu09] V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT 2009, vol. 5912 of LNCS, pp. 598–
616. Springer, Heidelberg, 2009. DOI: 10.1007/978-3-642-10366-7_35. 6,
13, 67, 71, 74

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT 2012, vol. 7237 of LNCS, pp. 738–755. Springer, Heidelberg, 2012.
DOI: 10.1007/978-3-642-29011-4_43. 13, 67, 71, 74, 78, 79, 85

[Lyu19] V. Lyubashevsky. Lattice-based zero-knowledge and applications. CIS 2019,
https://crypto.sjtu.edu.cn/cis2019/slides/Vadim.pdf. 69, 71, 78

[LZ19] Q. Liu and M. Zhandry. Revisiting post-quantum Fiat-Shamir. In
CRYPTO 2019, Part II, vol. 11693 of LNCS, pp. 326–355. Springer, Heidel-
berg, 2019. DOI: 10.1007/978-3-030-26951-7_12. 8

[MBA+21] R. Merget, M. Brinkmann, N. Aviram, J. Somorovsky, J. Mittmann, and
J. Schwenk. Raccoon attack: Finding and exploiting most-significant-bit-
oracles in TLS-DH(E). In USENIX Security 2021, pp. 213–230. USENIX
Association, 2021. 10

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In ACM CCS 2019, pp. 2111–2128. ACM Press, 2019. DOI: 10.1145/
3319535.3339817. 106

[Mel07] N. Meloni. New point addition formulae for ECC applications. In WAIFI,
vol. 4547 of Lecture Notes in Computer Science, pp. 189–201. Springer, 2007.
40

[Mic00] S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–
1298, 2000. DOI: 10.1137/S0097539795284959, https://doi.org/10.
1137/S0097539795284959. 106

[MJ19] C. Ma and M. Jiang. Practical lattice-based multisignature schemes for
blockchains. IEEE Access, 7:179765–179778, 2019. DOI: 10.1109/ACCESS.
2019.2958816, https://doi.org/10.1109/ACCESS.2019.2958816. 68, 69,
74

[MNPV99] D. M’Raïhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational
alternatives to random number generators. In SAC 1998, vol. 1556 of LNCS,
pp. 72–80. Springer, Heidelberg, 1999. DOI: 10.1007/3-540-48892-8_6.
44

https://dx.doi.org/10.1109/SP.2015.43
https://dx.doi.org/10.1109/SP.2015.43
https://dx.doi.org/10.1007/978-3-540-78440-1_10
https://dx.doi.org/10.1007/978-3-642-10366-7_35
https://dx.doi.org/10.1007/978-3-642-29011-4_43
https://crypto.sjtu.edu.cn/cis2019/slides/Vadim.pdf
https://dx.doi.org/10.1007/978-3-030-26951-7_12
https://dx.doi.org/10.1145/3319535.3339817
https://dx.doi.org/10.1145/3319535.3339817
https://dx.doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://dx.doi.org/10.1109/ACCESS.2019.2958816
https://dx.doi.org/10.1109/ACCESS.2019.2958816
https://doi.org/10.1109/ACCESS.2019.2958816
https://dx.doi.org/10.1007/3-540-48892-8_6

158 BIBLIOGRAPHY

[MO09] M. Medwed and E. Oswald. Template attacks on ECDSA. In WISA 08, vol.
5379 of LNCS, pp. 14–27. Springer, Heidelberg, 2009. 25

[Mon87] P. L. Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987. 20, 23

[MOR01] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In ACM CCS 2001, pp. 245–254. ACM Press, 2001.
DOI: 10.1145/501983.502017. 68, 86

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT 2012, vol. 7237 of LNCS, pp. 700–718. Springer,
Heidelberg, 2012. DOI: 10.1007/978-3-642-29011-4_41. 70, 101, 102,
103, 104

[MP13] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small param-
eters. In CRYPTO 2013, Part I, vol. 8042 of LNCS, pp. 21–39. Springer,
Heidelberg, 2013. DOI: 10.1007/978-3-642-40041-4_2. 77

[MPSW19] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-
signatures with applications to bitcoin. Des. Codes Cryptogr., 87(9):2139–
2164, 2019. DOI: 10.1007/s10623-019-00608-x, https://doi.org/10.
1007/s10623-019-00608-x. 12, 68

[MSEH20] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-FAIL: TPM
meets timing and lattice attacks. In USENIX Security 2020, pp. 2057–2073.
USENIX Association, 2020. 10, 20

[MSM+16] H. Morita, J. C. N. Schuldt, T. Matsuda, G. Hanaoka, and T. Iwata. On the
Security of the Schnorr Signature Scheme and DSA Against Related-Key
Attacks. In ICISC 2015, Lecture Notes in Computer Science, pp. 20–35.
Springer, 2016. 45

[MWLD10] C. Ma, J. Weng, Y. Li, and R. H. Deng. Efficient discrete logarithm
based multi-signature scheme in the plain public key model. Des. Codes
Cryptogr., 54(2):121–133, 2010. DOI: 10.1007/s10623-009-9313-z, https:
//doi.org/10.1007/s10623-009-9313-z. 68

[NAB+19] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and
D. Stebila. FrodoKEM. Technical report, National Institute of Stan-
dards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 108, 113, 131

[NKDM03] A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. Proactive two-party
signatures for user authentication. In NDSS 2003. The Internet Society, 2003.
68, 69, 72, 85

[NRS21] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr
multi-signatures. In CRYPTO 2021, Part I, vol. 12825 of LNCS, pp.
189–221, Virtual Event, 2021. Springer, Heidelberg. DOI: 10.1007/
978-3-030-84242-0_8. 12, 68, 70

https://dx.doi.org/10.1145/501983.502017
https://dx.doi.org/10.1007/978-3-642-29011-4_41
https://dx.doi.org/10.1007/978-3-642-40041-4_2
https://dx.doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://dx.doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/s10623-009-9313-z
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://dx.doi.org/10.1007/978-3-030-84242-0_8
https://dx.doi.org/10.1007/978-3-030-84242-0_8

BIBLIOGRAPHY 159

[NRSW20] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In ACM CCS 2020, pp.
1717–1731. ACM Press, 2020. DOI: 10.1145/3372297.3417236. 68, 70,
106, 110, 128, 130

[NS02] P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology, 15(3):151–176,
2002. DOI: 10.1007/s00145-002-0021-3. 20, 25

[NS03] P. Q. Nguyen and I. E. Shparlinski. The insecurity of the elliptic curve digital
signature algorithm with partially known nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003. 25

[NT12] P. Q. Nguyen and M. Tibouchi. Lattice-based fault attacks on signatures. In
Fault Analysis in Cryptography, Information Security and Cryptography, pp.
201–220. Springer, 2012. DOI: 10.1007/978-3-642-29656-7_12, https:
//doi.org/10.1007/978-3-642-29656-7_12. 19

[Oka93] T. Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In CRYPTO’92, vol. 740 of LNCS, pp.
31–53. Springer, Heidelberg, 1993. DOI: 10.1007/3-540-48071-4_3. 6

[OLR18] T. Oliveira, J. C. López-Hernández, and F. Rodríguez-Henríquez. The
Montgomery ladder on binary elliptic curves. Journal of Cryptographic
Engineering, 8(3):241–258, 2018. DOI: 10.1007/s13389-017-0163-8. 23

[OO98] K. Ohta and T. Okamoto. On concrete security treatment of signatures
derived from identification. In CRYPTO’98, vol. 1462 of LNCS, pp. 354–369.
Springer, Heidelberg, 1998. DOI: 10.1007/BFb0055741. 8, 49

[OST06] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
The case of AES. In CT-RSA 2006, vol. 3860 of LNCS, pp. 1–20. Springer,
Heidelberg, 2006. DOI: 10.1007/11605805_1. 22

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, vol. 1592 of LNCS, pp. 223–238. Springer,
Heidelberg, 1999. DOI: 10.1007/3-540-48910-X_16. 126

[Pas03] R. Pass. On deniability in the common reference string and random ora-
cle model. In CRYPTO 2003, vol. 2729 of LNCS, pp. 316–337. Springer,
Heidelberg, 2003. DOI: 10.1007/978-3-540-45146-4_19. 8, 85, 112, 119

[PBY17] P. Pessl, L. G. Bruinderink, and Y. Yarom. To BLISS-B or not to be:
Attacking strongSwan’s implementation of post-quantum signatures. In
ACM CCS 2017, pp. 1843–1855. ACM Press, 2017. DOI: 10.1145/3133956.
3134023. 22

[Ped92] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO’91, vol. 576 of LNCS, pp. 129–140. Springer,
Heidelberg, 1992. DOI: 10.1007/3-540-46766-1_9. 80, 129

https://dx.doi.org/10.1145/3372297.3417236
https://dx.doi.org/10.1007/s00145-002-0021-3
https://dx.doi.org/10.1007/978-3-642-29656-7_12
https://doi.org/10.1007/978-3-642-29656-7_12
https://doi.org/10.1007/978-3-642-29656-7_12
https://dx.doi.org/10.1007/3-540-48071-4_3
https://dx.doi.org/10.1007/s13389-017-0163-8
https://dx.doi.org/10.1007/BFb0055741
https://dx.doi.org/10.1007/11605805_1
https://dx.doi.org/10.1007/3-540-48910-X_16
https://dx.doi.org/10.1007/978-3-540-45146-4_19
https://dx.doi.org/10.1145/3133956.3134023
https://dx.doi.org/10.1145/3133956.3134023
https://dx.doi.org/10.1007/3-540-46766-1_9

160 BIBLIOGRAPHY

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In
CRYPTO 2010, vol. 6223 of LNCS, pp. 80–97. Springer, Heidelberg, 2010.
DOI: 10.1007/978-3-642-14623-7_5. 75

[Per16] T. Perrin. The XEdDSA and VXEdDSA Signature Schemes. Signal, revision
1, https://signal.org/docs/specifications/xeddsa/. 11, 12, 41

[PK15] OASIS Standard: PKCS #11 Cryptographic Token Interface Base Specifi-
cation Version 2.40, http://docs.oasis-open.org/pkcs11/pkcs11-base/
v2.40/os/pkcs11-base-v2.40-os.pdf. 105

[PK22] OASIS Standard: PKCS #11 Cryptographic Token Interface Current Mech-
anisms Specification Version 3.0, https://docs.oasis-open.org/pkcs11/
pkcs11-curr/v3.0/csprd01/pkcs11-curr-v3.0-csprd01.pdf. 106

[Poi00] D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem.
In PKC 2000, vol. 1751 of LNCS, pp. 129–146. Springer, Heidelberg, 2000.
DOI: 10.1007/978-3-540-46588-1_10. 112

[Por13] T. Pornin. Deterministic usage of the digital signature algorithm (DSA)
and elliptic curve digital signature algorithm (ECDSA). RFC 6979, https:
//tools.ietf.org/html/rfc6979. 11

[PS00a] D. Pointcheval and J. Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000. DOI: 10.
1007/s001450010003. 8, 62, 73, 90

[PS00b] G. Poupard and J. Stern. Fair encryption of RSA keys. In EURO-
CRYPT 2000, vol. 1807 of LNCS, pp. 172–189. Springer, Heidelberg, 2000.
DOI: 10.1007/3-540-45539-6_13. 106

[PSS+18] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rosler.
Attacking Deterministic Signature Schemes using Fault Attacks. In Euro
S&P 2018, pp. 338–352. IEEE, 2018. 11, 41, 43, 49

[qTE19] The qTESLA Team. Submission to NIST’s post-quantum project (2nd
round): lattice-based digital signature scheme qTESLA, version 2.7, Available
at https://qtesla.org/. 11

[RBV17] O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is my code constant
time? In DATE, pp. 1697–1702. IEEE, 2017. 40

[RCB16] J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime
order elliptic curves. In EUROCRYPT 2016, Part I, vol. 9665 of LNCS, pp.
403–428. Springer, Heidelberg, 2016. DOI: 10.1007/978-3-662-49890-3_
16. 23, 40

[RJH+19] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin. Ex-
ploiting determinism in lattice-based signatures: Practical fault attacks on
pqm4 implementations of NIST candidates. In ASIACCS 19, pp. 427–440.
ACM Press, 2019. DOI: 10.1145/3321705.3329821. 11, 41

https://dx.doi.org/10.1007/978-3-642-14623-7_5
https://signal.org/docs/specifications/xeddsa/
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/csprd01/pkcs11-curr-v3.0-csprd01.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/csprd01/pkcs11-curr-v3.0-csprd01.pdf
https://dx.doi.org/10.1007/978-3-540-46588-1_10
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://dx.doi.org/10.1007/s001450010003
https://dx.doi.org/10.1007/s001450010003
https://dx.doi.org/10.1007/3-540-45539-6_13
https://qtesla.org/
https://dx.doi.org/10.1007/978-3-662-49890-3_16
https://dx.doi.org/10.1007/978-3-662-49890-3_16
https://dx.doi.org/10.1145/3321705.3329821

BIBLIOGRAPHY 161

[RP17] Y. Romailler and S. Pelissier. Practical Fault Attack against the Ed25519
and EdDSA Signature Schemes. In FDTC 2017, pp. 17–24, 2017. DOI: 10.
1109/FDTC.2017.12. 11, 41, 43, 49

[RS17] J. Renes and B. Smith. qDSA: Small and secure digital signatures with
curve-based Diffie-Hellman key pairs. In ASIACRYPT 2017, Part II, vol.
10625 of LNCS, pp. 273–302. Springer, Heidelberg, 2017. DOI: 10.1007/
978-3-319-70697-9_10. 20

[RY10] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual ma-
chine reset vulnerabilities and hedging deployed cryptography. In NDSS 2010.
The Internet Society, 2010. 44

[Rya18] K. Ryan. Return of the hidden number problem. IACR TCHES, 2019(1):146–
168, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
7337. 10, 20

[Rya19] K. Ryan. Hardware-backed heist: Extracting ECDSA keys from qualcomm’s
TrustZone. In ACM CCS 2019, pp. 181–194. ACM Press, 2019. DOI: 10.
1145/3319535.3354197. 20

[SAB+20] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lep-
oint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehlé.
CRYSTALS-KYBER. Technical report, National Institute of Stan-
dards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 108, 113, 131

[SB18] N. Samwel and L. Batina. Practical fault injection on deterministic signatures:
The case of EdDSA. In AFRICACRYPT 18, vol. 10831 of LNCS, pp. 306–321.
Springer, Heidelberg, 2018. DOI: 10.1007/978-3-319-89339-6_17. 11, 41,
43, 49

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO’89, vol. 435 of LNCS, pp. 239–252. Springer, Heidelberg, 1990.
DOI: 10.1007/0-387-34805-0_22. 4, 8, 19, 68

[Sch91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991. DOI: 10.1007/BF00196725. 4, 10, 46, 128,
130

[Sch16] B. Schmidt. [curves] EdDSA specification. https://moderncrypto.org/
mail-archive/curves/2016/000768.html, 2016. 11, 41

[Sha90] A. Shamir. IP=PSPACE. In 31st FOCS, pp. 11–15. IEEE Computer Society
Press, 1990. DOI: 10.1109/FSCS.1990.89519. 2

[Sho94] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS, pp. 124–134. IEEE Computer Society Press, 1994.
DOI: 10.1109/SFCS.1994.365700. 12

https://dx.doi.org/10.1109/FDTC.2017.12
https://dx.doi.org/10.1109/FDTC.2017.12
https://dx.doi.org/10.1007/978-3-319-70697-9_10
https://dx.doi.org/10.1007/978-3-319-70697-9_10
https://tches.iacr.org/index.php/TCHES/article/view/7337
https://tches.iacr.org/index.php/TCHES/article/view/7337
https://dx.doi.org/10.1145/3319535.3354197
https://dx.doi.org/10.1145/3319535.3354197
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://dx.doi.org/10.1007/978-3-319-89339-6_17
https://dx.doi.org/10.1007/0-387-34805-0_22
https://dx.doi.org/10.1007/BF00196725
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://dx.doi.org/10.1109/FSCS.1990.89519
https://dx.doi.org/10.1109/SFCS.1994.365700

162 BIBLIOGRAPHY

[SM16] R. Susella and S. Montrasio. A compact and exception-free ladder for all
short weierstrass elliptic curves. In CARDIS, vol. 10146 of Lecture Notes in
Computer Science, pp. 156–173. Springer, 2016. 40

[SS01] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures
and a (t, n) threshold scheme for implicit certificates. In ACISP 01, vol.
2119 of LNCS, pp. 417–434. Springer, Heidelberg, 2001. DOI: 10.1007/
3-540-47719-5_33. 68

[SS19] P. Schwabe and D. Sprenkels. The complete cost of cofactor h = 1. In
INDOCRYPT 2019, vol. 11898 of LNCS, pp. 375–397. Springer, Heidelberg,
2019. DOI: 10.1007/978-3-030-35423-7_19. 40

[Sta96] M. Stadler. Publicly verifiable secret sharing. In EUROCRYPT’96, vol.
1070 of LNCS, pp. 190–199. Springer, Heidelberg, 1996. DOI: 10.1007/
3-540-68339-9_17. 13, 106

[STV+16] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 2016 IEEE Symposium on Security and
Privacy, pp. 526–545. IEEE Computer Society Press, 2016. DOI: 10.1109/
SP.2016.38. 68, 71

[TE19] R. Toluee and T. Eghlidos. An efficient and secure ID-based multi-proxy
multi-signature scheme based on lattice. Cryptology ePrint Archive, Report
2019/1031, https://eprint.iacr.org/2019/1031. 68, 69, 74

[TheYY] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version x.y.z), https://www.sagemath.org. 34

[TLT19] R. Tso, Z. Liu, and Y. Tseng. Identity-based blind multisignature from
lattices. IEEE Access, 7:182916–182923, 2019. DOI: 10.1109/ACCESS.2019.
2959943, https://doi.org/10.1109/ACCESS.2019.2959943. 68, 69, 74

[TSSK20] W. A. Torres, R. Steinfeld, A. Sakzad, and V. Kuchta. Post-quantum
linkable ring signature enabling distributed authorised ring confidential
transactions in blockchain. Cryptology ePrint Archive, Report 2020/1121,
https://eprint.iacr.org/2020/1121. 74

[TT18] A. Takahashi and M. Tibouchi. New bleichenbacher records:
Parallel implementation. https://github.com/security-kouza/
new-bleichenbacher-records, 2018. 38

[TT19] A. Takahashi and M. Tibouchi. Degenerate fault attacks on elliptic curve
parameters in OpenSSL. In IEEE EuroS&P 2019, pp. 371–386. IEEE,
2019. DOI: 10.1109/EuroSP.2019.00035, Full version available at https:
//eprint.iacr.org/2019/400.pdf. 15

[TTA18a] A. Takahashi, M. Tibouchi, and M. Abe. New Bleichenbacher records:
Fault attacks on qDSA signatures. IACR TCHES, 2018(3):331–371, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7278. 15, 20,
25, 26, 30, 31, 32, 34, 35, 37, 38, 60

https://dx.doi.org/10.1007/3-540-47719-5_33
https://dx.doi.org/10.1007/3-540-47719-5_33
https://dx.doi.org/10.1007/978-3-030-35423-7_19
https://dx.doi.org/10.1007/3-540-68339-9_17
https://dx.doi.org/10.1007/3-540-68339-9_17
https://dx.doi.org/10.1109/SP.2016.38
https://dx.doi.org/10.1109/SP.2016.38
https://eprint.iacr.org/2019/1031
https://dx.doi.org/10.1109/ACCESS.2019.2959943
https://dx.doi.org/10.1109/ACCESS.2019.2959943
https://doi.org/10.1109/ACCESS.2019.2959943
https://eprint.iacr.org/2020/1121
https://github.com/security-kouza/new-bleichenbacher-records
https://github.com/security-kouza/new-bleichenbacher-records
https://dx.doi.org/10.1109/EuroSP.2019.00035
https://eprint.iacr.org/2019/400.pdf
https://eprint.iacr.org/2019/400.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7278

BIBLIOGRAPHY 163

[TTA18b] A. Takahashi, M. Tibouchi, and M. Abe. New Bleichenbacher Records:
Fault Attacks on qDSA Signatures. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(3):331–371, 2018. DOI: 10.13154/tches.v2018.i3.331-371,
Full version available at https://eprint.iacr.org/2018/396.pdf.

[TTMH02] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Hiyauchi. Cryptanalysis
of block ciphers implemented on computers with cache. In International
Symposium on Information Theory and Its Applications, 2002. 22

[TuHGB18] N. Tuveri, S. ul Hassan, C. P. García, and B. B. Brumley. Side-channel anal-
ysis of SM2: A late-stage featurization case study. In Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018, San Juan,
PR, USA, December 03-07, 2018, pp. 147–160. ACM, 2018. DOI: 10.1145/
3274694.3274725, https://doi.org/10.1145/3274694.3274725. 28

[TZ21] A. Takahashi and G. Zaverucha. Verifiable encryption from MPC-in-the-
Head. Cryptology ePrint Archive, Report 2021/1704, https://eprint.
iacr.org/2021/1704.pdf. 14, 108, 109, 112, 113, 114, 117, 119, 121, 122,
124, 126, 127, 129, 131

[uHGDL+20] S. ul Hassan, I. Gridin, I. M. Delgado-Lozano, C. P. García, J.-J. Chi-
Domínguez, A. C. Aldaya, and B. B. Brumley. Déjà vu: Side-channel
analysis of mozilla’s NSS. In ACM CCS 2020, pp. 1887–1902. ACM Press,
2020. DOI: 10.1145/3372297.3421761. 10

[Unr15] D. Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In EUROCRYPT 2015, Part II, vol. 9057 of LNCS, pp. 755–
784. Springer, Heidelberg, 2015. DOI: 10.1007/978-3-662-46803-6_25. 8,
112

[Unr17] D. Unruh. Post-quantum security of Fiat-Shamir. In ASIACRYPT 2017,
Part I, vol. 10624 of LNCS, pp. 65–95. Springer, Heidelberg, 2017. DOI: 10.
1007/978-3-319-70694-8_3. 8

[vSY15] J. van de Pol, N. P. Smart, and Y. Yarom. Just a little bit more. In
CT-RSA 2015, vol. 9048 of LNCS, pp. 3–21. Springer, Heidelberg, 2015.
DOI: 10.1007/978-3-319-16715-2_1. 25

[Wag02] D. Wagner. A generalized birthday problem. In CRYPTO 2002, vol.
2442 of LNCS, pp. 288–303. Springer, Heidelberg, 2002. DOI: 10.1007/
3-540-45708-9_19. 21, 27, 31, 68, 72

[WSBS20] S. Weiser, D. Schrammel, L. Bodner, and R. Spreitzer. Big numbers - big
troubles: Systematically analyzing nonce leakage in (EC)DSA implementa-
tions. In USENIX Security 2020, pp. 1767–1784. USENIX Association, 2020.
20

[Yar16] Y. Yarom. Mastik: A micro-architectural side-channel toolkit. Retrieved
from School of Computer Science Adelaide: http://cs. adelaide. edu. au/y-
val/Mastik, 16, 2016. 29

https://dx.doi.org/10.13154/tches.v2018.i3.331-371
https://eprint.iacr.org/2018/396.pdf
https://dx.doi.org/10.1145/3274694.3274725
https://dx.doi.org/10.1145/3274694.3274725
https://doi.org/10.1145/3274694.3274725
https://eprint.iacr.org/2021/1704.pdf
https://eprint.iacr.org/2021/1704.pdf
https://dx.doi.org/10.1145/3372297.3421761
https://dx.doi.org/10.1007/978-3-662-46803-6_25
https://dx.doi.org/10.1007/978-3-319-70694-8_3
https://dx.doi.org/10.1007/978-3-319-70694-8_3
https://dx.doi.org/10.1007/978-3-319-16715-2_1
https://dx.doi.org/10.1007/3-540-45708-9_19
https://dx.doi.org/10.1007/3-540-45708-9_19

164 BIBLIOGRAPHY

[YAZ+19] R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-
based zero-knowledge arguments with standard soundness: Construction and
applications. In CRYPTO 2019, Part I, vol. 11692 of LNCS, pp. 147–175.
Springer, Heidelberg, 2019. DOI: 10.1007/978-3-030-26948-7_6. 74

[YC22] Yubico YubiHSM2 Guide: Backing Up Key Material, https:
//developers.yubico.com/YubiHSM2/Usage_Guides/YubiHSM2_for_
ADCS_Guide/Backing_Up_Key_Material.html. 105

[YF14] Y. Yarom and K. Falkner. FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In USENIX Security 2014, pp. 719–732.
USENIX Association, 2014. 20, 22

[YFT20] M. Yan, C. W. Fletcher, and J. Torrellas. Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures. In USENIX Security
2020. USENIX Association, 2020. 22

[YJ00] S. Yen and M. Joye. Checking before output may not be enough against
fault-based cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000.
DOI: 10.1109/12.869328, https://doi.org/10.1109/12.869328. 45

[YY98] A. Young and M. Yung. Auto-recoverable auto-certifiable cryptosystems. In
EUROCRYPT’98, vol. 1403 of LNCS, pp. 17–31. Springer, Heidelberg, 1998.
DOI: 10.1007/BFb0054114. 106

[ZCD+19] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi,
S. Ramacher, C. Rechberger, D. Slamanig, J. Katz, X. Wang, and
V. Kolesnikov. Picnic. Technical report, National Institute of Stan-
dards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 11, 12, 41, 42, 46,
63

[ZCD+20] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ra-
macher, C. Rechberger, D. Slamanig, J. Katz, X. Wang, V. Kolesnikov,
and D. Kales. Picnic. Technical report, National Institute of Stan-
dards and Technology, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 119, 125

https://dx.doi.org/10.1007/978-3-030-26948-7_6
https://developers.yubico.com/YubiHSM2/Usage_Guides/YubiHSM2_for_ADCS_Guide/Backing_Up_Key_Material.html
https://developers.yubico.com/YubiHSM2/Usage_Guides/YubiHSM2_for_ADCS_Guide/Backing_Up_Key_Material.html
https://developers.yubico.com/YubiHSM2/Usage_Guides/YubiHSM2_for_ADCS_Guide/Backing_Up_Key_Material.html
https://dx.doi.org/10.1109/12.869328
https://doi.org/10.1109/12.869328
https://dx.doi.org/10.1007/BFb0054114
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Abstract
	Resumé
	Acknowledgments
	Contents
	Introduction
	Proofs and Identifications
	Removing Interactions
	Overview of Thesis
	Other Publications

	Advanced Security Analysis
	LadderLeak
	Introduction
	Preliminaries
	Timing Attacks on Montgomery Ladder
	Improved Analysis of Bleichenbacher's Attack
	Experimental Results
	Software Countermeasures

	Security of Hedged Fiat-Shamir Signatures
	Introduction
	Preliminaries
	Formal Treatment of Hedged Signatures
	Security of Hedged Signatures Against Fault Attacks
	Analysis of XEdDSA
	Analysis of Picnic2
	Concluding Remarks

	New Constructions
	Two-Round Multi-Party Signing from Lattices
	Introduction
	Preliminaries
	DS2: Two-round n-out-of-n Signing from Module-LWE and Module-SIS
	MS2: Two-round Multi-signature in the Plain Public Key Model
	Lattice-Based Commitments

	Verifiable Encryption from MPC-in-the-Head
	Introduction
	Preliminaries
	Our Transform
	Methods for Compressing Ciphertexts
	Concrete Instantiations
	Conclusion and Future Work

	Bibliography

